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Abstract  
 

Advancing hydrogen as a sustainable energy 
carrier requires both efficient catalysts for the green 
hydrogen evolution reaction (HER) and materials 
with optimal proton transport properties for proton 
exchange membrane (PEM) electrolyzer or fuel cells, 
enabling a comprehensive approach to clean 
hydrogen production and utilization. 

For HER, electrochemical1 and photochemical2 
technologies show advantages for high efficiency, 
selectivity, and scalability, making them the most 
promising approaches for producing hydrogen from 
H2O or H2S splitting. Metal sulfides have gained 
attention as promising catalysts for HER due to their 
unique electronic and optical properties, such as 
high charge transfer efficiency, narrower band gaps 
and abundant active sites, leading to enhanced 
catalytic activity3. To achieve efficient exploration of 
electro- and photo- catalysts for HER, supervised 
machine learning (ML) algorithms were employed to 
assist a large-scale screening of metal sulfide with 
optimal structural stability and reactive activity.To 
select the most suitable catalysts for HER, simple 
but thermochemical reasonable descriptors enabling 
the representation of catalyst properties and 
catalytic activities are essential for discovering or 
designing new catalysts via computational screening, 
including stability, band gap, and intermediate 
adsorption energy analysis. However, with the large 
number of possible metal sulfide compositions, 
facets and active sites, it is challenging to access all 
these descriptor values through experimental or DFT 
screening alone. Especially, intermediate adsorption 
energies on the metal sulfide surfaces are not 
readily available in online databases. Hence, we 
implemented a machine learning-aided screening 
approach to explore optimal metal sulfide catalysts 
over 881 MxSy lattices for HER. DFT was 
introduced as a computational tool to obtain the 
convergence capacity of 3680 adsorption structures 
and the H adsorption energies on the surfaces 
(around 2000), serving as targets for supervised ML 
models as shown in Figure 1. Four different 
supervised ML algorithms are selected, Artificial 
neural network (ANN), random forest (RF), support 
vector machine (SVM), and Gaussian process (GP). 
Overall, the best-trained random forest regression 
model can rapidly predict the energies over 10,000 
unique adsorption structures and finally identified 10 
and 37 potential metal sulfide lattices with optimal 

stability, band gap, and catalytic activity for HER. ML 
accelerates novel materials discovery by 
reproducing DFT results at lower research cost and 
interprets physically meaningful rules to bridge 
theory and experiments, facilitating efficient 
materials exploration and catalyst design. 

PEM4 are specialized materials designed to 
facilitate the flow of protons (H+) while blocking the 
passage of electrons and other gases, and they are 
important in hydrogen elecytrolyzer or fuel cells. The 
two-dimensional (2D) crystals hold the potential to 
significantly advance the field of PEM technology, 
characterized by exceptional molecular permeability 
and selectivity. Previous research has proved that 
understanding the energy barriers involved in proton 
permeation on 2D materials is essential for 
designing efficient proton-conductive materials5. ab-
initio molecular dynamics (AIMD) simulations and 
machine learning (ML) techniques were used to 
predict and analyse proton permeation barriers in 
non-metal two-dimensional (2D) materials as shown 
in Figure 1. We calculated permeation barriers on 
around 500 2D materials through AIMD, thereby 
establishing a dataset that correlates 9 simple 
structural and electronic properties with proton 
permeation capacity, shedding light on the key 
determinants of proton permeation, which includes 
pore diameter, pore size and atomic electron affinity 
in modulating proton transport, offering insights into 
the design of advanced 2D materials for proton 
exchange membranes and fuel cells. Further AIMD 
simulations studied the selectivity for H2/H+ with low 
proton permeation barrier, which screened out 18 
promising candidates including widely studied 
graphene, silicene, and h-BN, supporting the 
robustness and credibility of predictions. Notably, 
experimentally synthesized but underexplored 
materials for PEMs like germanene, cubic silicone, 
TeC, TeCl, GeSe and CSe, hold significant potential 
for investigation, while other candidates currently 
exist only as theoretically stable structures. 
Therefore, the integration of first-principles 
computational methods(DFT and AIMD) and ML 
accelerates the discovery of high-performance 
proton-conducting membranes and provides a 
deeper understanding of the fundamental 
mechanisms underlying proton permeation in non-
metal 2D materials. 
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Figure 1. Schematic illustration of discovery materials for HER catalysts and PEMs.  
 


