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The study of semicrystalline polymers’ mechanical 
properties is vital due to their significant role in 
various industries. For example, isotactic 
polypropylene (iPP), a semicrystalline polymer, is 
the second most produced synthetic polymer 
globally and is widely utilized in products like films, 
fibers, and plastics. The characteristics of these 
materials, such as their chemical structure, 
molecular weight, degree of crystallinity, and 
molecular alignment, are influenced by the methods 
and conditions used during their synthesis and 
processing. [1-3] 
  
Molecular dynamics (MD) simulations have proven 
effective in capturing the chemical and physical 
structures of polymers, such as polypropylene (PP), 
and in modeling their mechanical properties. Prior 
studies have represented isotactic polypropylene 
(iPP) using atomistic or united-atom models, which 
simplify the system by excluding explicit hydrogen 
atoms. [4,5] Similarly, MD simulations have been 
employed to study the tensile deformation of 
polyethylene (PE). [6] This method involved 
equilibrating the system between strain applications, 
yielding stress–strain curves closely matching 
experimental observations. [7] 
 
Artificial intelligence, particularly machine learning, is 
becoming a powerful tool in scientific research, 
offering innovative solutions to complex problems by 
identifying patterns and enabling predictions from 
large datasets. Artificial neural networks (ANNs) 
have gained traction in materials science as a robust 

regression tool for capturing complex correlations 
between processing conditions, microstructure,  and 
resulting thermo-mechanical properties. [8,9] ANNs, 
with their flexibility and capacity to model intricate 
relationships, have shown the ability to effectively 
describe the complex structure–property correlations 
of this kind of materials. [10] 
 
In this study, we perform MD simulations of various 
iPP systems to predict stress–strain behavior, 
validating our results against experimental data and 
using different properties such as the molecular 
weight, the crystallinity and the Hermman’s 
orientation factor to parameterize a constitutive 
model. Additionally, we apply ANNs to explore 
structure-property relationships, linking the chemical 
and physical features of the polymer to the 
constitutive model parameters that describe its 
mechanical behavior. Here, we train ANNs on data 
generated from MD simulations, using experimental 
data only for validation.  
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Figure 1. Spatial distribution of crystalline and non-
crystalline regions of the simulated iPP.  
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Figure 2. Simulated Stress-Strain curve at 108 s-1 for iPP 
calculated by Molecular Dynamics simulations (blue) and 
linear region (green) for computing Young’s modulus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 


