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Colloidal quantum dots (QDs), which were awarded 
the 2023 Nobel Prize in Chemistry,  exhibit complex 
electronic, optical, and structural properties, making 
them essential in optoelectronics, photovoltaics, and 
nanomedicine. Despite advances in understanding 
QD surface chemistry and trap state formation, key 
questions remain, particularly regarding surface 
effects on electronic properties. Addressing these 
challenges requires accurate theoretical 
modeling.[1, 2] 
In our group, extensive density functional theory 
(DFT) studies have explored QDs up to ∼4.5 nm, 
revealing that increasing system size leads to band 
gap collapse and facet-specific localization of 
frontier orbitals.[3] We also found that introducing 
surface vacancies induces reconstructions that 
widen the band gap and delocalize charge carriers, 
emphasizing the critical role of surface geometry in 
defining QD properties. However, DFT-based 
approaches are computationally expensive, limiting 
their application to larger, more realistic systems and 
longer timescales. 
To overcome these limitations, we are preparing to 
employ machine learning force fields (MLFFs) 
trained on DFT datasets [4]. A key aspect of this 
approach is the inclusion of long-range electrostatic 
interactions during the training process to ensure the 
structural stability of QDs, which is crucial for 
accurately capturing their surface and bulk 
properties. These MLFFs aim to provide DFT-level 
accuracy at significantly reduced computational 
costs, enabling the study of larger QD systems and 
their dynamic behavior over extended timescales. 
We anticipate applying ML-based models to various 
QD compositions, including CdSe, InP, PbSe, and 
CsPbBr₃, facilitating more efficient investigations into 
QD growth and optoelectronic integration. This 
transition highlights the transformative potential of 
machine learning in advancing the computational 
toolkit for nanomaterial design. 
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Figure 1.  A typical QD model that resembles closely 
experimental observations.  


