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Novel  crystal  structures  have  allowed  significant 
improvements  across  various  research  fields,  for 
example, in the discovery of solar cells [1], catalysts 
[2],  superconductors [3],  hardware components [4] 
and batteries [5]. For a single crystal composition, a 
vast number of stable structures can be found with 
each  having  a  unique  set  of  physical  properties, 
such as electrical conductivity, thermal conductivity, 
magnetism,  and  optical  behavior.  Stable  crystal 
structures are local minima on the potential energy 
surface (PES) of the respective composition, and the 
number  of  possible  stable  structures  increases 
exponentially with the number of atoms per cell [6]. 
As  a  result  of  the  wide  variety  of  possible  stable 
structures  and  their  physical  properties,  crystal 
structure  search  is  an  important  challenge,  with 
global  energy  optimization  being  the  most 
fundamental task. 

Many  computational  methods  exist  for  crystal 
structure search, typically involving the relaxation of 
candidate  structures  to  local  minima  on  the  PES. 
These  relaxations  require  evaluating  energies, 
forces,  and  stress  at  each  step,  often  relying  on 
computationally expensive density functional theory 
(DFT). The simplest crystal structure search method 
is  ab  initio  random  structure  search  (AIRSS)  [7], 
where  the  structures  of  the  candidate  pool  are 
randomly  selected  for  evaluation  with  structure 
relaxation.  Alternative  approaches,  such  as 
Bayesian  optimization  [8],  evolutionary  algorithms 
[9],  and  particle  swarm  optimization  [10]  improve 
efficiency  but  still  depend  on  full  DFT  structure 
relaxations  and  do  not  use  generated  labels  for 
speeding  up  the  relaxation  trajectories  itself. 
Machine learning force fields (MLFFs) on the other 
hand,  including  neural  networks  and  kernel-based 
models,  can learn the PES of  target  systems and 
therefore  dramatically  reduce  computational  costs. 
When  trained  on  a  sufficiently  large  dataset, 
machine learning models have proven to be useful 
tools for structure relaxation [11]. However, in many 
applications,  including  crystal  structure  search, 

suitable datasets  for  training the MLFFs are often 
not available and need to be created. To assemble 
such data sets efficiently while avoiding faulty MLFF 
predictions for structures that are very different from 
the  training  data,  active  learning  has  been 
successfully  applied  to  MLFF  training  [12].  There 
also exist some generative approaches that do not 
rely  on  the  evaluation  of  candidate  structures  but 
instead use diffusion models [13] that are trained on 
large  databases  of  stable  materials  such  as 
MaterialsProject [14].

In this work, we propose an iterative high-throughput 
virtual screening approach to global optimization in 
crystal  structure  search  based  on  active  learning 
and  structure  relaxations  of  large  candidate  pools 
with  neural  network  MLFF  ensembles.  The  key 
component  of  our  method  is  a  neural  network 
ensemble  that  accelerates  structure  relaxations, 
selects new training data points towards the region 
of interest, finds low-energy clusters in the candidate 
pool,  and  finally  provides  a  stopping  criterion  to 
measure convergence. Our process is initialized with 
unlabeled  data,  sampling  a  fixed  number  of 
structures for DFT labeling in each active learning 
cycle and we apply random perturbations to training 
structures  to  circumvent  bad  training  performance 
on symmetric structures. Using ensembles of MLFFs 
to measure the uncertainty of predictions, which is 
needed for our active learning algorithm, does not 
pose any further limitations to the choice of model 
architecture and therefore allows for any model to be 
used, as long as it  is  able to accurately learn the 
PES  of  interest.  Especially  with  the  increasing 
availability of pre-trained models and datasets [15], 
a flexible choice of model architectures allows one to 
start  from  trained  models  and,  for  this  reason, 
possibly further reduce the need for expensive DFT 
calculations during active learning. Furthermore, our 
method  enables  straight-forward  parallelization  of 
computationally demanding tasks, making it efficient 
for use on high-performance computing.

We evaluate our method for global optimization of 
Si16, Na8Cl8, Ga8As8, and Al4O6. Here, we reduce the 
computational  effort  by  up  to  two  orders  of 
magnitude compared to approaches without  active 
learning.  We show that  the  method  is  capable  of 
finding  multiple  relevant  local  minima  in  the  low-
energy  region  of  Si16 without  a  large  increase  in 
computational  effort,  compared to  only  finding  the 
global energy minimum. Finally, we demonstrate the 
transferability  of  the  neural  network  ensembles  to 
relatively larger systems by training the models only 
on the smaller structures of Si16 and Al4O6 and using 
them  for  structure  search  of  Si46 and  Al16O24, 
respectively.  This  additionally  diminishes  the 
computational  expense  of  DFT  calculations 
throughout the active learning phase.
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Figures

Figure 1. Schematic overview of  the method. Initially,  a 
pool  of  candidate  structures  is  generated  based  on 
random or symmetric generation. Next, the active learning 
cycle is started by the selection of promising datapoints 
and by training the neural network ensembles. These are 
then  used  to  accelerate  structure  relaxations  for  all 
structures in the candidate pool. At the end of the active 
learning  cycle,  the  neural  network  models  propose  the 
most  promising  clusters  of  low-energy  structures  and  a 
stopping criterion is applied. In the case of convergence, 
the most promising structures are further validated through 
structure relaxation with DFT.


