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In  the  framework  of  material  science,  core-level 
spectroscopies are established strategies to  probe 
the electronic structure and chemical environment of 
materials. While these techniques provide valuable 
information, their interpretation in complex systems 
is  not  straightforward,  emphasizing the importance 
of theoretical insights from ab-initio approaches. On 
the other hand, the time required for computing an 
X-ray spectrum increases with the number of non-
equivalent atoms, becoming prohibitively expensive 
for  complex,  disordered  materials.  This  challenge 
can be tackled  by employing a surrogate model that 
combines  the  precision  of  ab  initio  methods  with 
computational efficiency [1]. We trained a machine-
learning  (ML)  model  for  predicting  X-ray 
Photoelectron  Spectroscopies  (XPS),  based  on 
Kernel  Ridge  Regression  (KRR)  [2]  and  atom-
density descriptors. Core-electron Binding Energies 
(BE)  are  used  as  the  target  quantity.  A 
comprehensive  automated  AiiDA  workflow  [3], 
integrating  first-principles  XPS  simulation  with 
sample  sub-selection  via  Farthest  Point  Sampling 
(FPS), was employed to generate the critical amount 
of  data  needed  for  the  training  process.  The  ML 
models  were  trained  on  a  representative  dataset 
comprising about 250 lithiated Si-based structures, 
previously  obtained  through  ab  initio  molecular 
dynamics  (MD),  DeePMD  and  grand  canonical 
Monte Carlo simulations [4]. Validation on a dataset 
of around 50 structures demonstrated an accuracy 
of  0.1  eV,  aligning  with  typical  XPS experimental 
resolution. To accurately sample the relevant range 
of  Li  concentrations,  we  generated  an  additional 
dataset of structures, containing over 70,000 atoms 
each,  which  was  prepared  employing  a  melt-
quench-anneal  procedure  and  neuroevolution 
potentials (NEPs) [5]. We leveraged the ML model to 
build  a  stoichiometry  map  in  order  to  identify  the 
LixSi  phases that  form at  various potentials  in  Si-
based anodes.
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