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Creating reliable models for synthetic textiles 
manufacturing process is challenging due to the 
inherent complexity of polymers and the diversity of 
manufacturing conditions. Traditional atomistic 
models, while accurate at the molecular level, are 
computationally demanding and difficult to scale [1]. 
On the other hand, machine learning models often 
struggle to generalize beyond training data, 
particularly in accurately capturing the physical 
properties of polymers [2,3]. This research 
addresses these limitations by introducing a hybrid 
modeling framework that combines atomistic 
simulations, surrogate models, and machine 
learning techniques. The approach leverages the 
strengths of each method to achieve enhanced 
predictive accuracy and adaptability in real-time 
manufacturing conditions. 
 
The primary objective of this study is to accurately 
model the stress-strain behavior and tenacity of 
synthetic yarns made of polymers as a function of 
material composition and process control variables, 
which include, melting and cooling temperatures, 
extruder pump pressure, and spinning godets         
speed. By linking these variables to microstructural 
properties such as crystallinity and polymeric chains 
orientation, the proposed model aims to optimize 
melt spinning manufacturing processes for improved 
yarn strength and consistency. 
 
The first component of the hybrid approach is a 
coarse-grained molecular dynamics (CGMD) model, 
implemented using LAMMPS [4] and Python for data 
analysis. The CGMD model reduces computational 
complexity while maintaining accuracy by 
representing polymeric chains as simplified particles. 
This approach captures essential features of 
molecular interactions and links crystallinity and 
orientation to the mechanical properties of the yarn. 
Figure 1 shows a graphical representation of the 
coarse-grained model.  
 
To generate initial configurations, periodic 
microstructures with alternating crystalline and 
amorphous domains were created using the 
Interphase Monte Carlo (IMC) method, as described 
in [5]. The amorphous phase was modeled using a 
random walk technique, ensuring realistic 
distribution of non-crystalline chains. The generated 
initial configuration was subsequently equilibrated 
using simulations in the NPT ensemble to obtain a 

realistic initial condition, in terms of structure and 
density. Finally, these configurations were subjected 
to stress simulations to generate the stress strain 
curves. An example of the generated curves is 
shown in Figure 2. 
 
To enable real-time predictions, a surrogate model 
was developed to approximate the behavior of the 
atomistic model. The input and output of the reduced 
model are the same than those of the atomistic one: 
crystallinity and polymeric chains orientation as 
inputs, and mechanical properties such as maximum 
stress, elongation, and tenacity as outputs. This 
reduced model uses Principal Component Analysis 
(PCA) to minimize the dimensionality of input and 
output variables while preserving critical features. A 
Radial Basis Function (RBF) network, implemented 
using Scikit-Learn, maps the transformed inputs to 
the corresponding outputs, predicting properties 
such as maximum stress, elongation, and tenacity. 
The surrogate model significantly reduces 
computational requirements while maintaining 
predictive accuracy. To train the surrogate model, a 
parametric set of physical simulations was 
performed, followed by machine learning fitting to 
capture the underlying relationships. 
 
The final component is a dense neural network 
model developed in PyTorch, designed to directly 
link manufacturing variables to mechanical 
properties. The process begins with an experimental 
dataset providing process variables (uexp) and 
measured mechanical properties (yexp). Figure 3 
illustrates this hybrid modeling framework that 
integrates three key elements: 
 

• Neural Network 1 (NN1) transforms process 
variables into microstructural features. 

• Neural Network 2 (NN2) maps these features to 
mechanical properties. 

• A surrogate physical model generates 
secondary predictions for comparison. 

 
Three loss functions ensure accuracy and 
consistency: 
 

• Empirical Loss aligns predictions with 
experimental data. 

• Physical Loss ensures consistency with the 
surrogate model. 

• Constraint Loss enforces domain-specific 
physical rules. 

 
The total loss function optimizes the hybrid 
framework to balance experimental and physical 
accuracy. 
 
Preliminary validation indicates the hybrid model 
improves stress-strain predictions by 25% compared 
to traditional atomistic and standalone machine 
learning approaches.  
 
The resulting hybrid tool provides real-time 
predictions of the mechanical performance based on 
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current process conditions. It integrates insights 
from both molecular dynamics and empirical data, 
providing a holistic predictive solution. The model 
successfully links process control variables to both 
the tenacity and mechanical properties of the yarn, 
providing a valuable tool for optimizing 
manufacturing conditions. 
 
In summary, this study demonstrates a novel hybrid 
modeling framework that combines atomistic 
simulations, surrogate modeling, and neural 
networks to address the challenges of synthetic yarn 
manufacturing. By leveraging the strengths of these 
techniques, the model offers real-time, accurate 
predictions of mechanical properties based on 
process variables. This approach has the potential 
to transform process control and material 
optimization in polymer manufacturing. 
 
Future work will focus on expanding the model 
applicability to other polymer systems and 
incorporating additional experimental data to 
improve robustness. Validation in industrial settings 
will further assess its scalability and impact on 
manufacturing efficiency. 
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Figure 1. Atomistic tensile test 

 

 
Figure 2. Stress strain curve obtained with the coarse-
grained toolkit 

 

 
 

Figure 3. Hybrid modelling methodology proposed. 

 
 
 
 
 


