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Bonds and local atomic environments are crucial 
descriptors of material properties. They have been 
used to create design rules and heuristics, as 
descriptors in machine-learned interatomic 
potentials and general machine learning of material 
properties.[1] 
 

Implementations and algorithms, such as ChemEnv 

and LobsterEnv, for identifying local atomic 

environments based on geometrical characteristics 

and quantum-chemical bonding analysis are now 

available.[2,3] Fully automatic workflows and 

analysis tools have been developed to use quantum-

chemical bonding analysis on a large scale.[3-5] The 

first part of the lecture will demonstrate how our 

tools, which assess local atomic environments and 

perform automatic bonding analysis, help develop 

new machine-learning models and a new intuitive 

understanding of material properties.[6] 

Many new universal machine-learned interatomic 

potentials, such as MACE-MP-0, have been 

developed.[7] The second part of the lecture will 

showcase how these potentials, in combination with 

DFT, could significantly accelerate our research. 

The focus will be on the interplay of DFT and 

machine-learned interatomic potentials, presenting 

new fully automated workflows for training, fine-

tuning, and benchmarking these potentials, 

implemented in our software autoplex 

(https://github.com/autoatml/autoplex). Additionally, I 

will show how to train new interatomic potentials 

from scratch by exploring potential energy surfaces 

extensively, offering a method to enhance current 

universal machine-learned potentials.[8] 

Beyond this, the general trend toward automation in 

computational materials science and some of our 

recent contributions will be discussed.[5,9] 
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