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Abstract  
 
Chalcogenide perovskites are a recent family of 
inorganic materials in which anions in the ABX3 
perovskite structure correspond to S2-, Se2- or Te2-, 
and do not consider oxygen-based compounds. With 
less than a decade of development, these materials 
have acquired significant attention from the scientific 
community due to their potential as active material 
for energy conversion applications, especially in 
photovoltaic technology. Although theoretical studies 
predict that many chalcogenide perovskites have 
outstanding optoelectronic properties, only a few 
have been experimentally synthesized with the true 
corner-sharing perovskite structure. [1] Challenges 
arise due to the different possible edge-sharing 
crystal structures that can exist with this 
stoichiometric arrangement (Figure 1a-d). 
 
For traditional perovskites, such as oxide or halide-
based compounds a geometric factor based on the 
ionic radii is commonly used to predict phase 
stability. The Goldschmith tolerance factor, t = (rA + 
rX)/ (√2 (rB + rX)) has traditionally been a rule of 
thumb for perovskite prediction, with stable 
structures typically falling within 0.8<t<1.0. [2] 
However, this approach is less effective for 
predicting the stability of non-oxide perovskites, 
achieving an accuracy of less than 66%. Recently, 
other tolerance factors have been developed, 
incorporating terms related to electronegativity to 
account for the covalent nature of metal-chalcogen 
bonds. [3], [4] These newer tolerance factors 
improve accuracy to approximately 72% when 
compared with experimental data. 
 
Despite these improvements, there remains 
significant room for enhancement. For oxide and 
halide perovskites, a new tolerance factor, τ, was 
developed using a machine learning approach called 
SISSO (sure independence screening and 
sparsifying operator). This tolerance factor achieves 
an accuracy of approximately 91% when validated 
against experimental results. Additionally, it 

facilitates the identification of new double 
perovskites and their probabilities of stability, 
providing a valuable guide for synthetic and 
computational efforts. [5] 
 
Inspired by the SISSO method, [6] we constructed a 
new dataset from experimental reports of non-oxide 
perovskites, focusing particularly on sulfide and 
selenide compounds. This dataset contains 283 
materials, with 27% corresponding to chalcogenides 
and the rest to halides. We then generated a set of 
features by applying linear combinations of 
elemental properties—such as electronegativity, 
ionic radius, and charge—using basic mathematical 
operations like subtraction, multiplication, division, 
exponentiation, square roots, and natural logarithms. 
 
The features were ranked based on the overlap 
between stability ranges of stable and unstable 
materials, with the top 2,000 features exhibiting the 
smallest overlaps. Next, classification trees were 
trained using 5-fold cross-validation, and the 
features were ranked by mean accuracy. Notably, 
the classification trees were limited to a depth of 
one, ensuring a simple threshold-based decision-
making process. 
 
Through this process, we derived a new tolerance 
factor with greater accuracy than both t and τ for the 
same dataset. Using this factor, we identified a set 
of potential chalcogenide perovskites by fixing a 
stoichiometric ratio of 1:1:3 and ensuring charge-
balanced compounds (Figure 1e). Solid solutions 
with multiple metals at the A or B positions were also 
considered. The new tolerance factor was then used 
to predict the stability of these unexplored 
chalcogenide perovskites. 
 
The predicted stable chalcogenide perovskites were 
ranked based on the earth abundance of their 
constituents. Subsequently, state-of-the-art machine 
learning algorithms, such as MODNet [7] and 
CrabNet, [8] were applied to predict properties 
relevant to photovoltaic applications, particularly 
bandgaps. These algorithms were fine-tuned using 
experimental data from the stable perovskites’ 
dataset, along with their corresponding experimental 
properties. 
 
By considering stability, earth abundance, and 
photovoltaic properties, each material was ranked 
based on its suitability for next-generation solar 
cells. This approach requires no resource-intensive 
computational calculations, relying solely on 
stoichiometric formulae. Consequently, this pipeline 
provides a fast, reliable, and efficient method for 
guiding the experimental discovery of new 
chalcogenide perovskites. 
 
In conclusion, the development of this data-driven 
tolerance factor represents a significant advance in 
the predictive design of chalcogenide perovskites, 
addressing limitations of earlier approaches fully 
based on density functional theory methods. By 
enhancing accuracy and integrating practical 
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considerations like earth abundance and 
photovoltaic properties, this pipeline accelerates the 
identification of stable perovskite structures. It offers 
a simple approach for guiding experimental efforts, 
enabling progress in the discovery of next-
generation materials for sustainable energy 
technologies. 
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Figure 1. Typical crystal structures that ABX3 compounds 
could have, where only the corner-sharing structure 
corresponds to the real perovskite (a), while the other 
crystals (b, c, d) are equivalent to edge-sharing structures 
and cannot be denominated perovskites. (e) Periodic table 
of the elements with a color code based on the element 
prevalence in predicted chalcogenide perovskites. (f) 
Different formulae corresponding to reported tolerance 
factors for perovskite materials. 


