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Segmentation – the assigning of user-specified class 
to each pixel in an image – is a prerequisite for most 
downstream analysis in microscopy, like phase 
quantification, physical simulations, particle size 
analysis etc. These analyses are key in materials 
science for understanding the structure-processing-
property relations and therefore for improving 
material performance. 
 
An existing micrograph segmentation technique is 
‘interactive pixel classification’, where features like 
average greyscale intensity, edge intensity and 
texture are extracted on multiple length scales around 
each pixel. A user then draws class labels onto pixels 
with a brush tool, and a classifier (commonly a 
random forest) is trained to map from the feature 
vector for that pixel to its class. Example tools that 
use this workflow include Trainable Weka 
Segmentation [1] and ilastik [2]; see Figure 1 for more 
explanation. 
 
This technique offers a few advantages: it is fast, 
works with only a few, sparse labels (also called 
‘weakly supervised segmentation’) and generalizes 
well to new materials, as a new classifier can be 
trained each time. However, it suffers when applied 
to more complex materials with tertiary or quaternary 
phases that may have a similar appearance.  
 
In this work [3] we improve this weakly supervised 
segmentation by supplementing these classical 
features with deep features extracted from a recent 
feature foundation model, DINOv2 [4]. DINOv2, a 
vision transformer (ViT) model, was trained using 
self-supervised learning on a large dataset of natural 
images, and has learned features that are consistent 
between “changes of pose, style or even objects” [4].  
Despite their semantic richness, these features are 
learnt at the “patch” level (a 14x14px square) in order 
to be computationally tractable. We introduce a 
technique for upsampling these features to better 
achieve the desired resolution, and examine existing 
upsampling techniques [5] in this context. We further 
study the impact of combining the deep features with 
the classical features and find they produce high-
qulaity segmentations. 
 

We demonstrate the effectiveness of our new 
technique as compared to the classical approach 
over two case studies. The first is a dataset of 
Transmission Electron Microscopy (TEM) images of 
human T-cells, where the goal is to segment the 
nucleus, cell and background. We train a classifier 
over the features of 6 sparsely labelled cells, and 
apply unseen to the other 130 cells, finding the deep 
features to produce segmentations that align far 
better with the ground truth labels.  
 
The second case study (shown partly in Figure 2) is 
the application of the technique to a series of 
micrographs which cover different material systems 
and instruments: ranging from NMC battery cathodes 
to alloys to polymorphs of organic crystals. We 
achieve good segmentations of complex phases and 
effects, like the “pore-back” [6] in the cathode, 
graphite inclusions in the alloy or separating the 
polymorphs in the crystal. 
 
We also explore using these features without any 
supervision or labels, and perform automated 
segmentation using clustering and attention maps 
from the deep features – potentially relevant in 
autonomous setups or for dataset creation. We 
continue to explore the limitations, including high 
GPU memory and time cost, a blurring effect 
introduce by the upsampling and the implict positional 
bias in the deep features, as well as recommending 
mitigations.  
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Figure 1: weakly-supervised micrograph segmentation using deep or classical features. A classfier (random 
forest or linear regressor) is trained to map from a labelled pixel’s feature vector to its class (drawn with a 
label). The deep ViT features are more semantically rich, admitting a better segmentation of the nucleus from 
the rest of the cell. Taken from [3]. 

 

 
 

Figure 2: example segmentations on a series of micrographs captured with various instruments using 
classical features, deep ViT features and the combination of both (‘hybrid’). We see that the hybrid scheme 

produces high quality segmentations of complex phases with only a few user labels. Adapted from [3].  


