
A I 4 AM 2 02 5  A p r i l  0 8 - 1 0 ,  2 0 2 5  –  S a n  S e b a s t i a n  ( S p a i n )  

 

Diagonalization without 
Diagonalization: 

A Direct Optimization Approach for 
Solid-State Density Functional 

Theory 

 
Tianbo Li2, Min Lin2, Stephen G. Dale1,  

Zekun Shi2,3, Giovanni Vignale1,  
A. H. Castro Neto1,4, Kostya S. Novoselov1  

1 Institute for Functional Intelligent Materials,  
National University of Singapore,  

Block S9, Level 9, 4 Science Drive 2, Singapore 117544 

2 Sea AL Labs,  
1 Fusionopolis Place, #17-10, Galaxis, Singapore 138522 

3School of Computing,  
National University of Singapore,  

 COM1, 13 Computing Dr, Singapore, 117417 

4Centre for Advanced 2D Materials 
National University of Singapore 

6 Science Drive 2, Singapore 117546 
 

sdale@nus.edu.sg 

 

We present a novel approach to address the challenges 
of variable occupation numbers in direct optimization of 
solid-state density functional theory (DFT).[1] By 
parameterizing both the eigenfunctions and the 
occupation matrix, our method minimizes the free 
energy with respect to these parameters. As the 
stationary conditions require the occupation matrix and 
the Kohn-Sham Hamiltonian to be simultaneously 
diagonalizable, this leads to the concept of “self-
diagonalization,” where, by assuming a diagonal 
occupation matrix without loss of generality, the 
Hamiltonian matrix naturally becomes diagonal at 
stationary points. Our method incorporates physical 
constraints on both the eigenfunctions and the 
occupations into the parameterization, transforming the 
constrained optimization into an fully differentiable 
unconstrained problem, which is solvable via gradient 
descent. 

This builds on our previous work in which the traditional 
self-consistent field (SCF) approach (i.e. solving the Kohn-
Sham equation to self-consistency) is converted to a 
direct-gradient-descent minimization of the total energy 
with respect to one-electron orbitals and an occupation 
function, subject to orthogonality constraints.[2-3] 

At the heart of our method is a novel reparameterization 
of the orthogonality constraint by QR decomposition.[2] 
Our programs are written using Google's JAX deep-
learning framework and are designed to be end-to-end 
differentiable to provide additional tools that are 
essential for discovery and design of advanced materials. 
Ultimately any available input variable can be targeted 
by the direct-gradient-descent optimization function, 
enabling; alchemical analysis by making nuclear charge a 
variable; on-the-fly adjustment of density functional 
parameters; and incorporation of neural networks to 
train a wide range of solutions. 

Experiments are carried out to demonstrate the efficacy 
of our approach on representative systems, an example 
of optimization from randomly initialized occupations to 
the expected Fermi Dirac distribution is presented in 
Figure 1. Finally, we discuss some of the cutting-edge 
applications we are actively working towards. 
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Figure 1: A  visualization of the change of occupation numbers during the optimization for a FCC aluminum crystal. Top: Occupation 

numbers as a function of Hamiltonian diagonal matrix elements relative to the Fermi level (εi(k) − εfermi). Each point represents a 

diagonal element-occupation number pair for a potentially occupied orbital. The color indicates the value of the occupation number, with 

red representing 1 and blue representing 0. A theoretical Fermi-Dirac distribution is shown as a dotted line. The occupation number 

distributions are displayed at steps 0, 1000, 2000, and 3000. The rightmost figure focuses on the eigen-values near the Fermi level within 

a narrow energy range (x-axis) at step 3000. Bottom: An illustration of the band structure of a metal (aluminum based on an FCC 

conventional unit-cell) and its relation to the occupation numbers. 


