
A I 4 A M 2 0 2 5  A p r i l  0 8 - 1 0 ,  2 0 2 5  –  S a n  S e b a s t i a n  ( S p a i n )

Harnessing Artificial Intelligence for 
Predicting Proximity Effects in Van 
der Waals Heterostructures

Lukas Cvitkovich1, Klaus Zollner1, Jaroslav Fabian1

1Institute for theoretical physics, Regensburg, Germany

lukas.cvitkovich@ur.de

The  emergence  of  van  der  Waals  (vdW)
heterostructures  has  revolutionized  materials
science by enabling the design of complex systems
with  tailored  electronic,  optical,  and  mechanical
properties  [1].  These  heterostructures,  constructed
by stacking atomically thin layers of two-dimensional
(2D)  materials,  exhibit  proximity  effects  that  can
profoundly  influence  their  performance  in
applications  such  as  spintronics,  quantum
computing,  optoelectronics,  and  energy  storage.
However, accurately predicting these effects, driven
by  subtle  interlayer  interactions,  presents  a
significant challenge  due  to  the  computational
expense  of  traditional  first-principles  methods  like
density functional theory (DFT). In contrast, artificial
intelligence promises rapid  exploration  of  vast
parameter  spaces,  identifying  optimal  vdW
heterostructure  configurations  for  targeted
applications.

In this work, we introduce a machine learning (ML) 
framework to predict proximity effects in vdW 
heterostructures with high fidelity and computational 
efficiency, based on the assumption that proximity 
effects are determined by the local atomistic 
environment. The approach leverages a dataset 
generated through extensive DFT calculations, 
encompassing diverse combinations of 2D materials
with varying stacking geometries, interlayer 
distances, and electronic properties.

We evaluate the performance of multiple ML 
algorithms, including prototypical regression models,
support vector machines, and neural networks, 
comparing the predictive accuracy across the test 
set. By incorporating domain knowledge, we ensure 
that the models capture critical physics, such as 
orbital hybridization and layer-resolved density of 
states. Feature importance analysis highlights the 
pivotal role of material-specific properties, providing 
insights into the mechanisms underpinning proximity
effects.

We validate the model predictions against 
independent DFT simulations and (if available) 
experimental data, achieving remarkable agreement.
As a case study, we present the results for twisted 
CrGeTe3/Gr heterostructure (see Fig. 1). CrCeTe3 is
a semiconducting 2D ferromagnet [2]. In this stacked

heterostructure, magnetic moments are induced in 
the graphene layer. In addition, Moire patterns 
(specific atomistic configurations appearing 
periodically along the plane) occur due to the 
relative twisting of the layers. Characterizing these 
complex patterns is not feasible in DFT as it requires
very large simulation cells. Thus, it offers a perfect 
test case for showcasing the abilities of ML-driven 
material science.

This study underscores the transformative potential 
of artificial intelligence in advanced materials 
research, offering a pathway to accelerate the 
discovery and optimization of vdW heterostructures. 
By integrating ML with first-principles calculations, 
we bridge the gap between computational efficiency 
and predictive accuracy, paving the way for novel 
material functionalities. The framework is extensible 
to other material classes, highlighting its versatility in
addressing broader challenges in condensed matter 
physics and materials design.
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Figures

Figure  1. DFT  (“true”)  vs.  ML-predicted  values  of  the
magnetic  moments  of  C  atoms  in  a  graphene  layer
stacked on a layer of ferromagnetic CrCeTe3 and twisted
with respect to it. The magnetic moments are induced by
proximity effects.


