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In this work, we demonstrate how recent advances 
in generative artificial intelligence (AI) can accelerate 
the design of lithium-ion battery electrodes by 
directly relating manufacturing parameters to 
microstructure and, ultimately, to full-cell 
performance [1]. Our approach addresses a 
fundamental challenge in electrode design: varying 
just a few common parameters, such as active 
material fraction and calendering pressure, can lead 
to a vast range of achievable microstructures, each 
with different transport properties and 
electrochemical behavior. Traditionally, bridging this 
“manufacturing-to-performance” gap would require 
expensive or time-consuming physics-based 
simulations and/or extensive experimental 
campaigns. 
 
We overcome these challenges by training a data-
driven, conditionalized generative model on a small 
dataset of electrode cross-sectional images. These 
images capture microstructural data varying three 
key parameters: active material weight percentage, 
porosity, and a binder adhesion metric. Crucially, 
after seeing only 21 training samples, our generative 
model accurately reproduces unseen 
microstructures while also predicting effective 
transport and interfacial properties. The fidelity of 
these generated microstructures is verified by 
comparing microstructural metrics (e.g., tortuosity 
factor, surface area) with those from samples 
withheld from training. The average relative errors 
are below a few percent, indicating reliable 
interpolation across the parameter space. 
 
Once trained, the generative model is able to 
generate accurate microstructural data five orders of 
magnitude faster than a state-of-the-art physics-
based manufacturing simulation. As such, it can be 
embedded in a Bayesian optimization loop. Each 
iteration begins by selecting a set of manufacturing 
parameters. The model generates corresponding 
microstructures, from which we extract effective 
properties (e.g., active material volume fraction, pore 
tortuosity factor, as shown in Figure 1). We used our 
own GPU accelerated solver, TauFactor2 [2], to 

extract the transport metrics. These properties 
parameterize a pseudo-two-dimensional (P2D) full-
cell model, enabling rapid electrochemical 
performance evaluation (implemented in PyBaMM 
[3]). An acquisition function balances exploration 
and exploitation, seeking manufacturing parameters 
that maximize application-specific objectives such as 
energy density or power density. 
 
We demonstrate the efficacy of this approach with 
multiple case studies, including both half- and full-
cell optimizations in a 4680 cylindrical battery 
format. Our findings reveal that design choices are 
highly sensitive to how performance is measured 
(e.g., specific energy versus cell-level energy 
density), underscoring the importance of industrially 
relevant normalization. By capturing the complex 
interplay among manufacturing steps, 
microstructural features, and large-scale 
performance, our framework (see Figure 2) offers a 
promising and scalable AI-based solution for rapidly 
optimizing electrodes and other advanced materials. 
 
This approach has recently formed the basis of a 
spin-out company from Imperial College London 
called Polaron (www.polaron.ai). Polaron can 
perform various microstructural analysis tasks, 
including dimensionality expansion (i.e. 2D to 3D) [4] 
and accelerated human-in-the-loop segmentation 
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Figure 2. Bayesian optimization loop. Microstructure generation involves the prediction of a representative 2563 voxel 
cube microstructure based on a manufacturing label vector, y, using a trained generative model. Characterization of this 
dataset using TauFactor 2 allows key microstructural properties to be extracted. A discharge simulation then uses these 
properties to parameterize a P2D model, which returns performance at the cell-level. Finally, an acquisition function 
determines the best next label to test. In the example shown here, active material wt % and porosity are optimized. 

 

Figure 1. Optimization results showing the specific energy for tested parameters. The color of each dot represents 

the specific energy at the cell level for a microstructure generated with a given parameter set. In the five plots showing 

individual optimizations at a given cell-level power, the black circled dot indicates the optimal parameter set that gives the 

highest specific energy. In the final subplot, these black circled points are plotted together to show the path of optimality 

through the parameter space. 


