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Due to the lack of short-range order, the study of 
disordered materials has fallen somewhat beyond 
the scope of density functional theory (DFT), which 
is, on the other hand, routinely used to model 
crystals and small molecules. Since the recent 
introduction of machine learning potentials (MLPs) 
with quasi-DFT accuracy and low CPU cost, the 
atomic-level description of disordered and 
amorphous materials has taken both quantitative 
and qualitative leaps forward. Quantitatively, MLPs 
grant us access to time and length scales previously 
only accessible to empirical force fields, which are 
unable to reliably describe chemical reactions and 
diverse atomic environments. Qualitatively, the 
increase in accuracy and scale have unlocked 
simulations that were previously unfeasible, allowing 
us to rethink the way that we do atomistic modeling. 
 
For the atomistic simulation of disorder materials, a 
crucial (and rather nontrivial) first step is the 
generation of realistic structural models, from which 
material properties can then be derived. A major 
challenge in this field has been how to reconcile 
simulation results with experiment. One way to do 
this is by generating many candidate structures 
according to some simulation protocol, like the so-
called “melt-quench” procedure often used to 
generate structural models of amorphous solids. 
Unfortunately, structures generated this way tend to 
disagree with available experimental data. Another 
way is to try and mimic the experimental growth 
process explicitly, as has been done for amorphous 
carbon [1]. However, most of the time this kind of 
simulation is simply intractable, even with MLPs, due 
to inaccessible experimental time scales and 
otherwise extreme complexity (e.g., if chemical 
reactions are involved). 
 
A third route is the generation of atomistic structures 
that are compatible with the experiment by design. 
This involves moving the atoms in such a way that 
the simulated and experimental target observables, 
e.g., an X-ray diffraction pattern, agree with each 
other. Reverse Monte Carlo is an example of such 
technique [2]. To ensure the generated structures 
remain physically sound, one can further enforce 
physical constraints by adding information about the 
potential energy of the system, i.e., to prevent the 
generation of high-energy structures, as in hybrid 
reverse Monte Carlo [3]. With the emergence of 
MLPs, these optimization schemes can now be 

performed with significantly higher fidelity than 
before, and for more chemically complex systems. 
At the same time, the availability of ML-based 
surrogate models to efficiently and accurately predict 
material observables amenable to direct comparison 
with experiment, like X-ray photoelectron 
spectroscopy (XPS) [4], opens the door to adding a 
wide variety of experimental constraints into the 
optimization. 
 
In this talk, I will tell the story of how we put these 
ingredients together to overcome the existing 
challenges and predict the structure of oxygenated 
amorphous carbon (Fig. 1) [5], and how our group is 
currently refining and extending these techniques for 
higher versatility and computational efficiency. 
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Figure 1: XPS deconvolution of an oxygenated 
amorphous carbon structure generated computationally to 
match experimental data, from Ref. [5]. 
 


