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Machine learning (ML) models for materials science 
are rapidly evolving, driven by large-scale, high-
quality datasets and innovative neural network 
architectures. This talk explores critical challenges in 
improving the accuracy and reliability of complex ML 
models, examining the interplay between quality and 
quantity of the training data  and model performance 
across material properties. 
 
Recent advances have been marked by the creation 
of extensive FAIR databases, such as alexandria, 
which provides over 5 million density-functional 
theory calculations spanning periodic compounds of 
various dimensionalities. These comprehensive 
datasets enable systematic investigation of the 
relationship between training data volume/quality 
and model accuracy. 
 
Comparative assessments of machine learning 
approaches—ranging from composition-based 
models to crystal-graph neural networks—
demonstrate that architectures with detailed 
geometrical information consistently outperform 
simpler compositional models. To address 
representation challenges, we discuss a novel 
material fingerprinting technique that we have 
recently proposed and that balances computational 
efficiency with human interpretability, offering new 
insights into representation of crystalline materials 
for machine learning inference. 
 
We finally discuss the ongoing race to develop 
universal machine learning interatomic potentials. 
Our recent benchmarking study focuses on 
predicting phonon properties, which are critical for 
understanding the vibrational and thermal behavior 
of materials. By analyzing approximately 10,000 ab 
initio calculations of phonons, we highlight the 
nuanced performance of different potentials on the 
Matbench Discovery leaderboard, revealing both 
their promising capabilities and existing limitations. 
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Figure 1. Two-dimensional map obtained by reducing 
the dimensions of the compositional fingerprints of 
the chemical elements from Ref.[4] that can be 
thought of as a data-mined and machine-learned 
periodic table. 
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