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The discovery of novel chemicals and 

materials will revolutionize various industries such 
as energy storage, environmental remediation, and 
manufacturing. Traditional discovery methods have 
been laborious and time-consuming, often taking 
years or even decades to move from hypothesis to 
production. This lengthy process involves extensive 
experimentation, trial and error, and significant 
resource investment. Traditional methods are not 
only slow but also costly, limiting the pace of 
innovation in chemistry and materials science. 
However, with the advent of AI, this paradigm is 
rapidly changing. AI technologies have the potential 
to revolutionize the way materials are discovered 
and developed, making the process faster, more 
efficient, and more cost-effective. For example, 
graph neural network interatomic potentials 
constrained to preserve the physical symmetries of 
atomic systems provide highly accurate and efficient 
alternatives to density functional theory. NVIDIA 
ALCHEMI (AI Lab for Chemistry and Materials 
Innovation) is at the forefront of this revolution, 
enabling AI to accelerate chemical and materials 
discovery by accelerating the components needed to 
deploy these AI methods in real-world workloads 
with maximum efficiency and usability.  
NVIDIA ALCHEMI aims to employ a comprehensive 
set of AI-accelerated microservices and the required 
software tooling to enable efficient and user-friendly 
solutions for hypothesis generation, solution space 
definition, property prediction, and experimental 
validation. By utilizing chemistry-informed large 
language models (LLMs) and machine learning 
interatomic potential (MLIP) AI models, our platform 
aims to enable the synthesis of vast amounts of 
chemical literature, formulate and refine hypotheses, 
and predict material properties with unprecedented 
speed and accuracy. In this presentation, we will 
introduce our suite of batched geometry relaxation 
(BGR) tools which provide 100x+ speedup for the 
task of geometry relaxation, a common inference 
workload in materials and chemical discovery.  
  

NVIDIA Alchemi's Batched Geometry 
Relaxation (BGR) tool is a cutting-edge solution 
designed to accelerate the process of geometry 
relaxation in materials and chemical discovery. 
Geometry relaxation is a critical step in 
computational chemistry and materials science, 
where the atomic positions of a system are 

optimized to find the lowest energy configuration. 
This process is essential for predicting material 
properties and understanding chemical stability. The 
BGR tool leverages advanced AI models, such as 
MACE[1] and AIMNet2[2], to perform geometry 
relaxation with unprecedented speed and accuracy.  

 
Table 1. Accelerated geometry relaxation using the 
NVIDIA Batched Geometry Relaxation NIM with MACE-
MP-0 model for 2,048 periodic materials systems with 20-
40 atoms.  
  

Batched 
Geometry 
Relaxation 
NIM  

Batch 
size  

Total 
time (s)  

Speedup  

Off  1  874  1x  

On  1  36  25x  

On  128  9  100x  

 

Table 1 presents the benchmark results for 
accelerated geometry relaxation using the NVIDIA 
Batched Geometry Relaxation tool with the MACE-
MP-0 model for 2,048 periodic materials systems 
with 20-40 atoms. When the BGR tool is turned off, 
the total time for relaxation is 874 seconds. 
However, with the BGR NIM turned on and a batch 
size of 1, the total time is reduced to 36 seconds, 
resulting in a 25x speedup. Further increasing the 
batch size to 128 reduces the total time to 9 
seconds, achieving a 100x speedup1.  
 
Table 2. Accelerated geometry relaxation using the 
NVIDIA Batched Geometry Relaxation NIM with AIMNet2 
model for 851 small organic molecules with an average of 
~20 atoms. 
   

Batched 
Geometry 
Relaxation 
NIM  

Batch 
size  

Total 
time (s)  

Speedup  

Off  1  678  1x  

On  1  12  60x  

On  64  0.9  800x  
 

Table 2 shows the benchmark results for 
accelerated geometry relaxation using the NVIDIA 
Batched Geometry Relaxation NIM with the AIMNet2 
model for 851 small organic molecules with an 
average of ~20 atoms. With the BGR NIM turned off, 
the total time for relaxation is 678 seconds. When 
the BGR NIM is turned on and a batch size of 1, the 
total time is reduced to 12 seconds, resulting in a 
60x speedup. Increasing the batch size to 64 further 
reduces the total time to 0.9 seconds, achieving an 
800x speedup.  
These unprecedented efficiency gains are primarily 
due to the use of inference batching and the 
elimination of CPU to GPU communication overhead 
during batched simulation. Batching allows multiple 
tasks to be processed simultaneously, significantly 
reducing computation time and increasing 
throughput. This is achieved using the NVIDIA Warp 
framework which has the flexibility to directly 
implement accelerated GPU kernels in machine 
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learning frameworks such as PyTorch and Jax. 
Additionally, optimizing AI inference for chemical 
simulations with NVIDIA CUDA libraries such as 
cuEquivariance further enhances efficiency of 
models such as MACE by optimizing specific slow 
operations. These innovations enable researchers to 
achieve faster, more accurate results, paving the 
way for next-generation innovations in various 
industries.  
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Figure 1. Breaking the accuracy-cost conundrum with 
MLIPs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


