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Quantum dots (QDs) are nanoscale semiconductor 
particles that exhibit size- and shape-dependent 
electronic and optical properties, making them highly 
versatile for applications in optoelectronics, 
photovoltaics, and biomedical imaging. However, 
simulating their dynamic behavior and intricate 
electronic structure -particularly in molecular 
dynamics (MD)- remains a challenge. Traditional 
force fields often lack the specificity to account for 
the unique structural and electronic environments 
within QDs, while ab initio methods -though 
accurate- are prohibitively expensive for large-scale 
or long-timescale simulations. This gap motivates 
the development of more efficient yet accurate 
approaches to model QD systems. 
 
Here, we introduce a novel automated platform for 
developing machine learning (ML) force fields 
tailored to QDs. Leveraging the QMflows software 
[1], our framework integrates high-level quantum 
mechanical data with advanced ML training 
frameworks available in the literature such as 
SchNetPack [2,3], DeepMD [4,5] and Allegro [6] (cf. 
Figure 1). This enables GPU-accelerated training of 
QDs for improved performance. By automating data 
collection, model training on various packages, and 
validation, the platform allows users to perform on-
the-fly simulations with minimal parameter tuning. 
Recognizing that the accuracy and transferability of 
ML force fields depend strongly on the quality of the 
training data, we also provide smart data selection 
tools that prioritize sampling diverse and less-
correlated structures from DFT calculations. This 
approach creates more informative training sets 
without requiring extensive data or incurring high 
computational costs. 
 
A key strength of the platform is its ability to improve 
simulation accuracy without introducing additional 
computational overhead, achieving near ab initio 
accuracy at a cost closer to that of classical force 
fields. The platform’s integration with QMflows 
makes it straightforward to create flexible workflows 
and link the resulting ML force fields to multiple 
quantum chemistry packages, with particular 
emphasis on the CP2K package [7]. 
 
Ultimately, this automated and computationally 
efficient framework contributes to the unification of 
quantum chemistry, machine learning, and materials 

science for the study and design of next-generation 
quantum dots. 
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Figure 1. Arquitecture of the platform as implemented in 
QMFlows. 
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