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Materials innovation is central to advancing clean energy technologies—powering 
breakthroughs in batteries, solar cells, low-energy semiconductors, thermal storage, and 
carbon capture and conversion. However, the discovery and development of new materials 
remain a major bottleneck, typically requiring 10 to 20 years of costly and time-consuming 
research. This challenge stems from the vastness of chemical space and the need for 
exhaustive characterization at sub-micrometre and atomic scales. 
In this presentation, I will introduce a synergistic approach that integrates experimental 
techniques with artificial intelligence (AI) to accelerate the discovery and optimization of 
advanced energy materials. I will showcase recent AI-driven methods, aligned with the goals 
of the Materials Genome Initiative [1], for predicting novel materials with tailored properties. 
This includes a deep learning framework based on graph neural networks (GNNs), trained on 
extensive datasets—such as those from the Materials Project, NOMAD, and other large-
scale repositories—to identify promising candidates for energy storage applications. 
Predicted materials are validated through advanced characterization techniques, including 
synchrotron radiation and neutron-based methods. I will present also recent findings using 
Nano Angle-Resolved Photoelectron Spectroscopy (Nano-ARPES), a powerful k-space 
nanoscope that enables high-resolution, momentum-resolved mapping of electronic band 
structures at the nano- and mesoscales hat provide the electronic finger print of complex 
materilas. This technique o^ers insights into how nanoscale heterogeneities and 
confinement e^ects influence valence band electronic states near the Fermi level [2–6]. 
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