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Na-ion batteries (NIBs) are considered sustainable 
and lower-cost alternatives to Li-ion batteries (LIB) 
[1]. Currently, no single NIB displays all the 
desirable characteristics needed for high 
performance. We aim to search across the 
polyanionic materials (PAM) universe comprising all 
chemical composition and structural variations to 
uncover compositions that are easy to synthesize, 
contain little or no elements with supply risk and 
have good electronic and ionic transport properties 
to achieve this goal. In Fig. 1, we illustrate the 
tremendous phase space of the PAM universe.  
 
Researchers (including the Nobel laureates 
Goodenough[2] and Whittingham[3]) acknowledge 
that more sophisticated theoretical guidance is 
needed to uncover the phase space and find optimal 
metal/polyanion combinations since compositions 
with few types of elements (4 to 6) have yielded 
limited success[4]. High throughput computation has 
been tried to screen through a large pool of 
candidate battery materials to identify suitable 
candidates for synthesis and application[5].  
The size of such candidate libraries depends on the 
type of property, chemical complexity and simulation 
system size requirements. Because DFT is an O(n3) 
method only ~104 configurations of ~100 atom 
transition metals oxide supercells can be handled 
with tier-0 supercomputing resources.   
Unlike unsubstituted pristine systems, substituted 
systems need larger simulation boxes and require 
statistical sampling of atomic configurations for each 
composition and degree of sodiation[6]. Even with 
state-of-the-art supercomputing and workflow 
infrastructure, we cannot explore target PAM phase 
space with DFT or even with ML potentials. By using 
conditional generative models we should be able to 
inversely design cathode materials based on target 
properties and reduce the amount of computational 
time needed to find the optimal configuration in the 
enormous PAM phase space. 
 
Before leveraging generative models for inverse 
designing promising candidates for cathode 
materials, it is crucial to establish a comprehensive 
database of sodium-ion cathode materials. The 
computational demands of DFT and ab initio 
molecular dynamics (AIMD) exceed our data 
collection capabilities, leading us to employ 
Graphical Neural Networks (GNNs) to develop a 
Machine Learning Potential (MLP). This approach 
enables us to study dynamics over extended time 
scales and large systems[7]. Through an Active 

Learning (AL) workflow, we refine our MLP to suit 
our specific system needs. For that, we have 
recently published a package known as CURATOR 
[8]. With CURATOR, we have built an autonomous 
workflow, where we train a MLP, then deploy the 
model to describe the dynamics of several systems 
and then we use batch active learning to pick out 
candidate samples from the MLP driven simulations 
which needs to be relabelled using DFT to improve 
our MLP.  
 
Given the disorder within the system, Cluster 
Expansion (CE)[9] is employed for the initial training 
set generation. CE also facilitates the modeling of 
initial and final states of diffusion using the Nudged 
Elastic Band (NEB) method to estimate energy 
barriers. With an estimation of energy barriers, we 
can deploy Kinetic Monte Carlo (KMC)[10] methods 
to model the ensemble dynamics of the system, 
shown in Fig. 2. The training of a suitable machine 
learning model for energy barrier estimation is in 
progress and done soon.  
 
Focusing on the Olivine and Maricite NaMPO4 
(M=Fe, Mn, Ni, and Co), we have successfully 
trained a MLP using the PAINN[11] architecture to 
model the dynamics of these materials on the same 
accuracy level as DFT. From Monte Carlo, 
molecular dynamics, and NEB simulations we hope 
to find the perfect doping range of transition metal 
ions giving us the most stable and energetically 
favorable system. Proving our methodology in this 
limited phase space, we can exploit it to the large 
phase space of the PAM universe and thus expand 
our search range even further obtaining enough data 
for the generative model.  
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Figure 1. The polyanionic materials phase space, 
consisting of different crystalline crystallographic 
structures, anions and cations. 

 

 
Figure 2. Conceptional idea of the workflow used to 
predict the diffusion barriers of ionic diffusion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


