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Variational density functional theory (VDFT) is a 
state-of the-art method for computing the electronic 
structure of materials in which the traditional self-
consistent field (SCF) approach (i.e. solving the 
Kohn-Sham equation to self-consistency) is 
converted to a direct-gradient-descent minimization 
of the total energy with respect to one-electron 
orbitals and an occupation function, subject to 
orthogonality constraints. The main advantages of 
this approach are:  

1. the optimization can be executed within a 
deep-learning differentiable framework. 

2. convergence properties are expected to 
improve. The new optimization methods 
available through deep-learning will not be 
susceptible to the same instability present in 
SCF methods, and will be resistant to 
becoming stuck in saddle-points as in 
standard gradient-descent methods. An 
example of this enhanced stability is 
presented in Figure 1. 

3. nonlocal (hybrid) functionals can be 
implemented along with semi-local 
functionals. 

4. Kohn-Sham eigenvalues and eigenfunctions 
can be obtained by a single diagonalization 
of the Kohn-Sham Hamiltonian matrix. 

At the heart of our method is a novel 
reparameterization of the orthogonality constraint by 
QR decomposition.[1] Our programs are written 
using Google's JAX deep-learning framework and 
are designed to be end-to-end differentiable to 
provide additional tools that are essential for 
discovery and design of advanced materials. 
Ultimately any available input variable can be 
targeted by the direct-gradient-descent optimization 
function, enabling; alchemical analysis by making 
nuclear charge a variable; on-the-fly adjustment of 
density functional parameters; and incorporation of 
neural networks to train a wide range of solutions. 

Experiments are carried out to demonstrate the 
advantages of our approach in terms of stability. We 
deliberately choose chemical systems that are 
known to be challenging for SCF methods and show 
that our method can reliably converge these. We 
construct a gradient-only based approach to 
geometry convergence that can simultaneously 
converge the electronic and the atomic structure. 
We will show that we can reliably predict the band 
structure and the potential energy surfaces of 
crystalline materials.[2] Finally, we discuss some of 
the cutting-edge applications we are actively working 
towards. 
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Figure 1. The optimization path taken by three different 
gradient descent optimizers from an identical starting point 
to the final (large dot) solution mapped onto a 2D potential 
energy surface, with the correct final solution represented 
by the black star. The system is a distorted diamond 
crystal shown in crystallographic coordinates. Notice that 
standard direct-gradient-descent method (sgd) gets stuck 
in saddle-points, newer convergence methods (yogi/adam) 
that include momentum and variable step sizes are more 

reliable when searching for local minima. 
 
 
 


