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Machine learning interatomic potentials (MLIPs) are
one of the main techniques in the materials science
toolbox,  able  to  bridge ab initio  accuracy with  the
computational  efficiency  of  classical  force  fields.
This  allows  simulations  ranging  from  atoms,
molecules,  and  biosystems,  to  solid  and  bulk
materials,  surfaces,  nanomaterials,  and  their
interfaces and complex interactions. 

A  recent  class  of  advanced  MLIPs,  which  use
equivariant  representations and deep graph neural
networks, is known as universal models [1-4]. These
models  are  proposed  as  foundational  models
suitable  for  any  system,  covering  most  elements
from  the  periodic  table.  Current  universal  MLIPs
(UIPs) have been trained with the largest consistent
dataset  available  nowadays.  However,  these  are
composed  mostly  of  bulk  materials’  DFT
calculations. 
In this presentation, we assess the universality of all
openly available UIPs, namely MACE, CHGNet, and
M3GNet, in a representative task of generalization:
calculation of surface energies. We find that the out-
of-the-box  foundational  models  have  significant
shortcomings  in  this  task  (Figs.  1-2),  with  errors
correlated to the total energy of surface simulations,
having an out-of-domain distance from the training
dataset. Our results [5] show that while UIPs are an
efficient  starting  point  for  fine-tuning  specialized
models  (Fig.  3),  we  envision  the  potential  of
increasing  the  coverage  of  the  materials  space
towards universal training datasets for MLIPs.

Figure  1. Performance  assessment  of  the  universal
interatomic potentials over the surfaces dataset. (a) Parity
plot for the total energy per atom of the bulk systems that
gave origin to the surfaces of the dataset. (b) Parity plot
for the total  energy per atom of the surfaces within the
dataset. (c) Parity plot for the surface energy (γ σ hkl) for
the surfaces within the dataset. For (a), (b), and (c), the
dashed line marks the x = y line. (d) Boxplot and violin plot
for the error in the prediction of the surface energy (γ σ
hkl)  from  the  three  universal  interatomic  potentials
evaluated. The horizontal lines in the middle of the boxes
mark the medians. The boxes are plotted from the first to
the third  quartile.  The whiskers extend to 1.5 times the
interquartile range from the third (above) and first (below)
quartile and empty circles mark the outliers (data points
outside the whiskers).

Figure  2. Kernel  PCA  (kPCA)  map  of  the  surfaces
dataset, where each point corresponds to a structure and
distances  represent  differences  in  input  features.  kPCA
map  with  MACE  representation  and  REMatch  kernel,
colored by the absolute surface energy error given by the
MACE model, with selected elements highlighted. Markers
represent the lattice structure of the bulk that generated
each  surface,  with  FCC,  BCC,  and  HCP  crystalline
systems highlighted.
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Figure  3. Performance  comparison  between  universal,
specialized,  and  universal  fine-tuned  interatomic
potentials. The root mean squared errors (RMSE) of the
universal interatomic potentials are compared in relation to
the surface chemistry,  for  selected elements.  The upper
triangle is the surface energy (γ σ hkl) RMSE, the lower
leftmost triangle is the bulk total energy per atom RMSE
and the lower rightmost triangle is the surface total energy
per  atom  RMSE.  The  numbers  in  parenthesis  are  the
number of surface structures evaluated for each chemical
element.
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