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Current quantum devices face signi f icant 
challenges, such as the presence of noise and 
decoherence in the physical systems that implement 
quantum circuits [1]. These challenges limit the scal- 
ability and the reliability of quantum computation, 
and pose a major obstacle for achieving quantum 
advantage over classical computation. Therefore, it 
is essential to minimize the resources required to 
implement quantum algorithms, while preserving the 
functionality and the fidelity of the computation. In 
the gate-based computational paradigm,  one of the 
common approaches for optimizing quantum circuits 
is to apply algebraic identities to perform gate 
permutations and gate cancellations in the original 
circuit [2, 3]. However, the number of available 
identities that can be applied to a circuit grows very 
quickly, as these identities need to be described for 
multiple combinations of gates. 
ZX-Calculus [4] is a graphical language that 
facilitates reasoning about quantum processes. Most 
notably, it has emerged as a versatile tool for 
manipulating quantum circuits. A ZX-diagram depicts 
a more general representation of a quantum circuit 
and it can be modified using a much more reduced 
set of transformations called ZX-rules, some of 
which can not be represented using the gate-based 
formalism. The basic elements of a ZX-diagram are 
spiders (nodes) and wires (edges). Spiders can be 
of two types: Z and X, and they can be interpreted 
as tensors composed of Pauli-Z and Pauli-X eigen- 
states, respectively [FIG.1]. 
Local complementation and pivoting [5,6] are the 
two essential rules that are used to simplify ZX-
diagrams in graph-like form. Both rules are inspired 
in their counterparts from graph theory and change 
the diagram by rewiring its connections and 
modifying the phases of the spiders involved in the 
transformation [FIG.2] 
Even though quantum circuit optimization via ZX-
calculus has shown very promising results, current 
state of the art approaches suffer from the fact that, 
after the simplification process is finished, one 
needs to translate the diagram back into an 
equivalent quantum circuit. This process can be very 
inefficient or even unfeasible in some cases [7] and,  
paradoxically, it can output circuits that are more 
computationally-expensive than the initial ones [8]. 
To correct this, we use Reinforcement Learning [9] 
to train an agent to perform the right set of  
transformations to any ZX-diagram, i.e, those that 
yield an improved quantum circuits at the end of the  
extraction process. In more detail, we use an actor-

critic method, the Proximal Policy Optimization 
algorithm (PPO) [10], and employ Graph Neural 
Networks (GNNs) [11] to interpolate both the policy 
and value functions [FIG.3]. 

Graph Neural Networks (GNNs) are a type of arti- 
ficial neural networks that are particularly well suited 
to work with data that can be represented as graphs, 
as it is the case for ZX-diagrams. These type of net- 
works typically involve message passing layers that  
propagate the information of each node of the net- 
work to its nearest neighbours, i.e., the nodes that 
are connected to it.  
We train our agent to target single and two-qubit 
gate count reduction on random circuits of Clifford+T 
gates, which are known to allow for universal 
quantum computation. After training, we benchmark 
our approach against the state-of-the-art ZX-
calculus [12, 13] based algorithms as well as gate-
based optimizers for such tasks.  
The agent is shown to be able to improve on the 
results obtained by all the competitors and, not only 
that, it can generalize the strategies learned from 5-
qubit circuits to 60-qubit circuits of up to 1200 gates 
[FIG 4,5,6] whilst remaining competitive in terms of 
computational performance.  
Our work lays a new foundation for quantum circuit 
optimization via ZX-Calculus, proving to improve  the 
stat-of-the art for continuos use but also 
demonstrating capabilities to optimise particular 
circuits via strategies such as curriculum learning. A 
preprint version of this work can be found at [14]. 
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Figures 

Figure 2. Graphical representation of the effect of the 
Local complementation rule when applied to a spider in 
the diagram (marked with a  red asterisk). 

Figure 6. Number of actions performed by the agent trained 
with random circuits of 5 qubits and 70 gates for different 
circuit sizes. 

Figure 1. Green and red spiders representation in the 
Hillbert space.

Figure 5. Scalability analysis of the RL-ZX agent against the 
algorithms of the library PyZX for random circuits of up to 60 
qubits. Compared methods include: The agent trained on random 
circuits of 5 qubits and 60 gates (orange), a gate-based optimizer 
(yellow) and the full_reduce algorithm (blue). (a) Total Gate Count. 
(b) 2-Qubit Gate Count 

Figure 4. Comparative analysis of the RL-ZX agent against 
the algorithms of the library PyZX for random circuits of 10 
qubits. Compared methods include: The agent trained on 
random circuits of 5 qubits and 60 gates (orange),  the 
full_reduce algorithm (purple) and the basic_optimization 
algorithm (blue). Regions shaded in red indicate instances of 
unsuccessful compressions, while those shaded in green 
denote successful compressions. (a) Total Gate Count. (b) 2-
Qubit Gate Count.

Figure 3. Schematic Overview of the Actor and Policy Net- 
works: The policy network, denoted by π(a|s), is visualized 
with each green spider from the diagram correspond- ing to a 
silver node, while the blue wires are depicted as purple 
connections. Action nodes are highlighted in orange, with 
interconnections among themselves and with the pertinent 
silver nodes, which provide a complete description of the 
actions. The critic network shares a similar architecture. 


