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In the last decade, methods incorporating rotational symmetry into their functional form 
have dominated the field of atomistic machine learning. Two main considerations have 
driven this design choice. Firstly, it was widely believed that rotational symmetry, when 
intrinsically built into a machine learning architecture, plays the role of necessary inductive 
bias, thus being crucial for a model's performance and generalizability. Secondly, rigorous 
rotational invariance might be necessary for atomistic simulations such as molecular 
dynamics to avoid subtle artifacts. In this talk, I will challenge the first belief by presenting 
an unconstrained model, Point Edge Transformer (PET), which is not rotationally invariant 
and instead relies on rotational augmentations during fitting. As Figure and Table 1 show, 
PET not only achieves state-of-the-art performance on multiple benchmark datasets of 
molecules and solids but also improves faster with the increase of the training data 
compared to other methods. To address the second consideration, we introduce a general 
symmetrization method that a-posteriori enforces rigorous rotational equivariance for any 
backbone architecture, which might even be superfluous given how accurate PET's learned 
rotational equivariance is. In the final part, I will present a few general considerations of why
unconstrained architectures are likely more efficient, especially in the data-rich regime, 
which might explain PET's excellent and often superior performance and more favorable 
scaling laws. These include: (i) in contrast to the equivariant world, each shallow layer of an 
unconstrained architecture is provably and trivially a universal approximator; (ii) there is no 
need in the expensive SO(3) algebra, which allows to achieve an unlimited angular 
resolution inexpensively and favors the computational efficiency overall.
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Figures

Figure 1. (a-c) Accuracy of PET potentials on liquid water, compared with NEQUIP[35]. (d-f) Learning curves for 
different molecular data sets, comparing symmetrized PET models with several previous works[23, 78–84], including 
the current state of the art. (d) Random CH4 dataset, training only on energies; (e) Random CH4 dataset, training on 
energies and forces; (f) Vectorial dipole moments in the QM9 dataset[82]. References in the legend and caption 
match the ones of Ref[1]. 

Table 1. Comparison of the accuracy of PET and current state-of-the-art models for the COLL, MnO, HM21 and HEA
data sets.  Energy errors  are given in  meV/atom, force errors  in  meV/Å.  y0 and yS indicate unsymmetrized  and
symmetrized models, respectively. References match the ones of Ref[1]. 
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