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Architectured materials have emerged as a key 
avenue for achieving specific properties while 
maintaining lightweight characteristics. This is 
particularly crucial in industries such as the 
aerospatial, where weight reduction is paramount. 
Additive manufacturing (AM) plays a pivotal role in 
this pursuit, offering the ability to create intricate 
structures with precise control over geometry and 
material distribution. [1], [2] Among the various AM 
techniques, laser-powder bed fusion (L-PBF) and 
laser-direct energy deposition (L-DED) stand out for 
its capability to fabricate complex components with 
high accuracy. However, achieving optimal results in 
L-PBF/L-DED necessitates meticulous control of 
process parameters to minimize defects and ensure 
desired outcomes. [3] This need for precision is 
even more accentuated for thin walls (< 400 µm), 
where such as warping, porosity and dimensional 
inaccuracies defects can readily appear (c.f. Figure 
1). Our primary focus revolves around investigating 
the impact of AM process parameters (the laser 
power – P and the scanning speed – v) onto the 
thickness (t) of AlSi7Mg06 thin walls.  
 
This problem can be tackled by the use of 
multiphysical simulations which, albeit informative, 
are slow and challenging to scale. Analytical 
physical models overcome these issues, [4] (c.f. 
Figure 2) but their ouput is more qualitative than 
quantitative. Besides, any type of simulation involves 
hidden parameters that are hard to estimate, 
hindering the simulation process in mimicking the 
experimental results. On the other hand, the 
experimental procedure and subsequent 
measurements present limitations in data 
acquisition, constraining the feasibility of leveraging 
data-driven approaches like data science or artificial 
intelligence. In this study, we aim to overcome these 
obstacles by the use of physically-informed data-
driven approaches. 
 
We have explored the process window by 
systematically varying parameters and analyzing 
their effects on wall thicknesses. Utilizing clustering 
k-nearest neighbors algorithms (c.f. Figure 3), we 
have been able to discern distinct clusters within the 
(P, v) space solely based on the thicknesses and 
their standard variations, devoid of any additional 
input. Each cluster can be attributed to different 

physical phenomena occurring during the melting 
process, shedding light on the underlying 
mechanisms at play. Dimensional analyses have 
been carried out to unveil relationships between 
thickness and process parameters. [5] This analysis’ 
relationship has been shown to be valid in one of the 
found clusters, for whose thicknesses we can make 
accurate predictions (c.f. Figure 4). 
 
Physically-informed Gaussian process algorithms 
have been employed to elucidate the explored t(P, 
v) space (c.f. Figure 5). By imposing the trend 
predicted by physical dimensional analysis as the 
mean in the Gaussian process model, we have 
effectively integrated theoretical insights with 
machine learning techniques. This approach has 
allowed us to map the intricate relationships within 
the parameter space and to identify critical points 
through analysis of maximum sigma values. These 
maxima can guide a strategic design of experiments 
for exploring new trial points, optimizing the 
efficiency of our investigations. Furthermore, by 
integrating theoretical models as mean inputs for the 
Gaussian processes, we not only succeeded in 
predicting wall thickness but also in extracting 
physical parameters that are challenging to measure 
directly. In addition to this approach, we have 
developed an iterative algorithm based on artificial 
neural networks to estimate the "elusive" process 
parameters, with the ultimate goal of improving the 
performance of our simulations and enhancing our 
understanding of the melting process.  
 
In conclusion, the synergistic integration of machine 
learning approaches with theoretical models has 
proven successful in elucidating how process 
parameters influence the thicknesses of laser beam 
melted walls. This represents a crucial step towards 
obtaining deeper insights into additive manufacturing 
processes and advancing the optimization of 
component fabrication. 
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Figure 1. Single-bead thin walls made of AlSi7Mg06 alloy 

 
 
 
 

 
 
 
Figure 2. Calculated dimensions as a function of physical 
parameters which are directly related to the process 
window parameters 

 

 
Figure 3. Cluster distribution and probability of cluster 
appurtenance. 
 
 

 
Figure 4. Thickness prediction as a function of the 
relationship found by the dimensional analysis, for each of 
the clusters. 
 
 

 
 
Figure 5. a) Mapping of the t(P, v) space and b) sigma 
obtained through a physically-informed Gaussian process.  
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