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Abstract

A proof of concept was demonstrated in the previous
work [1], illustrating the application of convolutional
neural  networks  (CNN)  in  extracting strain  profiles
from  x-ray  diffraction  (XRD)  data.  Numerically
generated data has been employed to design, fine-
tune,  and  train  a  specialized  convolutional  neural
network  (CNN)  with  the  overarching  objective  of
deducing spatial  strain profiles exclusively from X-
ray diffraction (XRD) data. Due to the impracticality
of acquiring and analyzing a large set of XRD curves
and strain profiles for training, the XRD curves were
computed  within  the  framework  of  the  dynamical
theory of diffraction, utilizing a recursive solution [2]
to the Takagi-Taupin differential equations [3]. The
corresponding strain profiles are generated by fitting
a B-spline function [4] to an asymmetrical Gaussian
function normalized to a unit maximum. The Debye-
Weller factor is calculated using the equation [5]:      

         DW (z)=e(−α × (e(z )/emax)
2)  

where z  is the depth coordinate  from the surface,
e (z) and emax are  the  strain  profile  and

maximum strain value of the crystal.

In this subsequent study, the primary objectives are
to  bring  the  numerically  generated  training  data
closer  to  the  experimental  data  (realistic  data),
subsequently adjusting the CNN architecture and to
have the strain profiles predicted for all materials by
this  CNN.  To  accommodate  counting  statistics,  a
randomly  generated  Poisson  distribution  is
incorporated  into  the  computed  XRD  intensity.
Additionally, random-valued noises (uniform noises)
are introduced to consider the noises in the peaks of
the  computed  intensity.  A  linear  function  with
randomly generated slopes in the range of 1 to 100
is  introduced  as  the  background  noise  to  induce
deviation  of  the  XRD  curve  base  from  being  a
straight line. The Debye-Weller profile is generated
by  fitting  a  B-spline  function  to  an  asymmetrical
Gaussian curve, the same curve used to generate
strain  profiles  thus  decoupling  it  from  the  strain
profile. The fitted weights are allowed to randomly
deviate  from  their  initial  value  within  a  specified
range with a uniform probability.
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Figure 1. General Workflow [1]


