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Developing next-generation energy storage technolo-
gies is vital for widespread renewable energy adoption,
improved transportation, grid stability, and greenhouse
gas emission reduction. In this pursuit, the quest for
solid electrolytes offers promising avenues for safer,
more stable batteries with higher energy density [1].
Ionic conductivity prediction for materials often relies
on resource-intensive ab initio computational methods
such as the Nudged Elastic Band (NEB) and Molecular
Dynamics (MD) [2, 3, 4]. By leveraging the theoretical
understanding of ionic motion in solids, onemay extract
ionic mobility information from the interatomic potential
(IAP) [5], which still relies on computationally demand-
ing Density Functional Theory (DFT) calculations.

Machine learning (ML) may offer a solution to computa-
tional limitations in material science. By analyzing large
datasets, efficient ML models can be created, reduc-
ing computational costs for predicting material proper-
ties. Given that labeled ionic conductivity data for solids
is scarce, one may employ semi-supervised learning,
as has been done in [6] with hierarchical clustering
on various structure descriptor representations. Alter-
natively, ML, and especially Graph Neural Networks
(GNN), may be employed to bypass the expensive DFT
calculations and efficiently predict IAP [7]. Trained on
an extensive dataset, like structure relaxation trajec-
tories from the Materials Project database [8], such
efficient ML IAP models may be utilized in NEB and
MD calculations in place of computationally demanding
DFT. An issue with this approach, however, is that both
NEB andMDmay necessitate extrapolating the ML IAP
significantly beyond the original training domain, which
could result in high errors. Avoiding these errors would
require utilizing active learning [9], albeit at the expense
of sacrificing some of the improvement in the computa-
tional demand.

In this work, we propose an alternative approach where
we study the topology of the ML IAP by only perturbing
a single atom at a time within a structure. By doing so,
we minimize the need for extensive extrapolation of the
model beyond its training domain, thus facilitating more
accurate predictions with reduced error. With this ap-
proach, we build physically motivated heuristic descrip-
tors and evaluate their performance on the available la-

beled computational [2] and experimental [6] data. Our
choice of ML IAP is the M3GNet model [7] trained on
the Materials Project data [8], although the proposed
method could be used with any IAP.

Within our method, each structure is considered as
having a single mobile ion per unit cell and a frozen
framework formed by the remaining atoms. A PES
scan is performed by placing the mobile ion at a set
of locations on a regular 3d grid and evaluating the po-
tential energy for the resulting structure. The grid spans
over the entire unit cell with axes parallel to the lattice
vectors. An example result of such a scan is shown
in Fig. 1, top. Assuming connectivity of nearby grid
nodes, each location is then marked with the minimal
energy required for the mobile ion to get there from its
equilibrium position, thus producing the minimal energy
level map, as depicted in Fig. 1, bottom.

The obtainedminimal energy level maps can be used to
extract valuable topological information about the sys-
tem. When constructed for a 2x2x2 supercell with the
mobile ion equilibrium positioned at its center, the low-
est level map value at the supercell’s surface should in-
dicate the lowest barrier for ion percolating into an ad-
jacent cell (Minimal Percolation Energy, MPE). While
the frozen framework approximation should result in
the overestimatedMPE, we assume that the introduced
error does not significantly change the relative ordering
of different materials with respect to the obtained val-
ues. Another useful value that can be extracted from
the minimal energy level map is the fractional volume
accessible to the ion under a given energy threshold.
We denote this value as the Free Volume (FV) and as-
sume that higher values of FV should be associated
with higher ion mobility. We test this assumption on the
extensive ab initio MD dataset [2], and observe good
correspondence between the FV and the values of the
diffusion coefficients extracted from ab initio MD simu-
lations at T =1000K, as shown in Fig. 2. Additionally,
we perform a similar validation on experimental data
collected from various sources by [6]. Figure 3 shows
the relation between the FV and experimental conduc-
tivity at room temperature. While the correlation is less
pronounced than in the simulated dataset, we can still
observe that higher FV values tend to correspond to
higher average conductivity, and vice versa. These
findings highlight the promising potential of our pro-
posed topological descriptors in identifying new solid
electrolytes.

In this study, we have introduced a novel approach by
proposing topological features extracted from the IAP,
leveraging the speed advantages of ML IAP. The pro-
posed features demonstrate reasonable performance
in predicting conductivity when evaluated against exist-
ing data. Looking ahead, we anticipate conducting ab
initio validation of structures identified by our proposed
features from the Materials Project dataset, ultimately
contributing to the development of more efficient solid
electrolytes for advanced energy storage applications.
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Figures

Figure 1: Potential energy surface for Li5TiN3 (mp-
686129), as predicted by M3GNet [7] (top), and cor-
responding minimal energy level map (bottom).
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Figure 2: Free volume with 0.9 eV threshold versus
AIMD diffusion coefficient at 1000K [2]
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Figure 3: Free volume with 0.9 eV threshold versus ex-
perimental conductivity at room temperature [6]
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