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The advent of neural network (NN) methodologies 
and expansive databases of materials has incited 
the deployment of deep learning techniques for 
atomistic predictions. Machine Learning (ML) 
algorithms, underpinned by datasets derived via 
Density Functional Theory (DFT), have found 
widespread application. These ML strategies 
expedite the design of novel materials by forecasting 
material properties with a fidelity approaching that of 
ab-initio calculations, albeit at significantly reduced 
computational costs. The past few years have 
witnessed the introduction of several rapid and 
precise deep learning architectures. Among these, 
graph NNs, such as MEGNet [1], CGCNN [2], 
SchNet [3], and GemNet [4], have proven to be 
particularly effective. Nonetheless, this approach is 
not without its limitations, including the requirements 
for bid data volumes, the high cost of model training, 
lack of result interpretability, and generalization 
challenges. Meanwhile, symbolic expressions 
elucidate a clear relationship between observations 
and the target variable. 
Historically, genetic algorithms have predominantly 
served as the methods for symbolic regression [5]. 
Due to their inherent advantages, this paradigm has 
been employed across various domains within 
materials science [6][7][8]. However, recent years 
have seen the development of numerous symbolic 
regression techniques founded on NN paradigms 
[9][10][11][12]. In the current study, we employed 
SEGVAE [13], owing to its simplicity and efficiency 
in processing small datasets. The SEGVAE 
algorithm, based on a Variational Autoencoder 
(VAE), is adept at identifying a suite of formulas that 
describe the observed data. The fundamental 
operational schema of the algorithm is depicted in 
Fig 1. We advocate for the application of SEGVAE 
to delineate the interaction of defects in 2D materials 
and their physical attributes. The utilization of 
symbolic regression techniques would enable the 
discovery of novel functional representations for the 
dependency of properties on the defect structure 
within materials. In this investigation, we employed a 
dataset of two-dimensional materials featuring 
defects [14], wherein the properties of these 
materials were simulated using the VASP software. 
The simulation approach is anchored in a physical 
model that utilizes the Density Functional Theory 
(DFT) methodology. 
Employing the SEGVAE method for symbolic 
regression, we successfully identified formulas 
characterizing the pairwise interactions of defects 
within the MoS2 and WSe2 crystals. An illustrative 

depiction of how the properties of a structure with 
two defects are influenced by the positioning of the 
defect pair in MoS2 is shown in fig. 2 (a)(b). An 
example for a structure with three defects and all 
correspondent interactions is illustrated in fig. 2 
(c)(d). For this, a small dataset of defect pairs of 
each type was selected to approximate interaction 
law by a formula derived from the SEGVAE 
algorithm. The resulting formula for the formation 
energy of a structure for a material with N defects 
can be approximated as: 
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The primary feature of this approach lies in its 
generalizability and interpretability. We used only a 
few hundred structural examples to learn all pairwise 
interactions to construct a formula for structures with 
an arbitrary number of defects. While NNs used 
almost 15000 structures to train. The functional form 
of the discovered dependency ensures the 
interpretability of the results. Remarkably, the found 
energy values significantly surpass many NN 
approaches, only fail compared to Sparse (MEGNet) 
as shown in fig. 3 whereas quality metric we used 
mean absolute error (MAE) of formation energy per 
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We also tested the pairwise decomposition method 
to determine the band gap defined as difference 
between LUMO and HOMO. To fit band gap value 
for arbitrary number of defects in structure we used 
the following formula: 
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Pair band gap r  is the value of 

band gap function of the structure with i-th and j-th 
defects and r  distance between the defects. As with 
the energy, SEGVAE was used to derive a function 
for the band gap value dependency on the distance 
between two defects. The formulas thus derived 
serve as approximations, given the lack of an 
analytical formula or law in nature that accurately 
describes such a dependency. Nonetheless, this 
methodology proficiently captures the target values, 
outperforming many other sophisticated algorithms 
or similar to MEGNet in terms of accuracy. The 
comparison results for band gap of this approach 
with other NN methods are presented in fig. 3. One 
more undauntable advantage of our method 
compared to NNs is the speed of obtaining predicted 
values. 
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Figure 1. The SEGVAE application, architecture, and 
training scheme. Adapted from [13] 
 

 
Figure 2. Defects in MoS2 and it's properties. (a) 
interaction energy, (b) HOMO, and LUMO as a function of 
the distance between the Mo vacancy and the S vacancy. 
The inset labels the positions of the nearest S sites to the 
Mo vacancy. (c) MoS2 structure with 3 defects, 1 Mo, 2 S 
vacancies. (d) defects separate from the structure. (a)(b) 
Taken from [14] 
 

 
Figure 3. Performance of the different methods in terms of 
the mean absolute error (MAE in meV) on 2d materials 
dataset with defects [14].  Symbolic is our method.  

 
 
 
 
 
 
 


