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Discovery and understanding of next-generation materials requires a challenging combination of the high 
accuracy of first-principles calculations with the ability to reach large size and time scales. We pursue a multi-
tier method development strategy in which machine learning (ML) algorithms are combined with exact 
physical symmetries and constraints to significantly accelerate computations of electronic structure and 
atomistic dynamics. First, density functional theory (DFT) is the cornerstone of modern computational 
materials science, but its current approximations fall short of the required accuracy and efficiency for 
predictive calculations of defect properties, band gaps, stability and electrochemical potentials of materials for 
energy storage and conversion. To advance the capability of DFT we introduce non-local charge density 
descriptors that satisfy exact scaling constraints and learn exchange functionals called CIDER [1]. These 
models are orders of magnitude faster in self-consistent calculations for solids than hybrid functionals but 
similar in accuracy. On a different level, we accelerate molecular dynamics (MD) simulations by using 
machine learning to capture the potential energy surfaces obtained from quantum calculations. We developed 
NequIP [2] and Allegro [3], as well as extensions the first deep equivariant neural network interatomic potential 
models, whose Euclidean symmetry-preserving layer architecture achieves state-of-the-art data efficiency and 
accuracy for simulating dynamics of molecules and materials. In parallel, we implement autonomous active 
learning of interactions in reactive systems, with the FLARE algorithm that constructs accurate and 
uncertainty-aware Bayesian force fields on-the-fly from a molecular dynamics simulation, using Gaussian 
process regression [4]. These MD simulations are used to explore long-time dynamics of phase 
transformations and heterogeneous reactions. 
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Figures 
 
Figure 1. Large-scale heterogeneous catalytic reaction dynamics simulated using Bayesian machine learning force fields 
with FLARE, capable of reaching 1 trillion atoms at quantum accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


