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Designing  new  materials  is  the  ultimate  goal  of 
material  science,  an applied craft.  Traditionally  it’s 
accomplished  by  proposing  and  then  screening 
candidates.  Computing  the  basic  properties  of  a 
single  crystal  using  ab  initio  methods,  such  as 
density  functional  theory  (DFT),  in  the  best  case, 
requires  several  hours  of  computational  time  [1]. 
And even if a faster screening method is used, the 
space of all  possible materials is intractable [2].  A 
better approach is to take advantage of the fact that 
stable crystals occupy only a small subspace of all 
possible  atom  combinations  –  and  explore  this 
space  with  generative  models.  We  propose 
WyckoffTransformer, a machine learning model for 
generating crystals.

Our  work  relies  on  a  crucial  insight:  most  of  the 
experimentally  observed  crystalline  materials  have 
internal  symmetry,  beyond  unit  cell  transition,  as 
shown in Figure 1. Those symmetries define optical, 
electrical, and magnetic properties [3]. For example, 
piezoelectric  effects only appear in crystal  classes 
that lack a center of symmetry [4]. Knowing just the 
symmetrical  properties  and  chemical  composition 

allows predicting the potential energy with accuracy 
comparable  to  a  prediction  based  on  complete 
structural information [5].

A crystal is described by a symmetry group, which 
contains  all  transformations  under  which  it  is 
invariant. Space is separated into so-called Wyckoff 
positions,  subspaces  invariant  under  different 
symmetry  operations.  Each  Wyckoff  position  can 
have 0 – 3 degrees of freedom. If an atom occupies 
a  Wyckoff  position,  it’s  repeated  1  –  192  times 
across the unit cell, depending on the space group 
and position.

A crystal can be represented as a space group and 
a list of Wyckoff positions and elements occupying 
them.  Such  representation  does  not  always 
completely define the structure, but greatly reduces 
the number of degrees of freedom.  For the example 
in  Figure  2,  the  reduction  is  from 
26 [atoms ]×3 [coordinates ]+6[ lattice ]=84 to 
just  4  (Wyckoff positions i  and j  each have a free 
parameter, and the lattice has two).

Such  discrete  representation  naturally  calls  for  a 
token-based model. The elements and Wyckoff sites 
can  be  ordered  by  electronegativity  and  then 
Wyckoff  letter,  thus allowing for  an autoregressive 
approach. If we denote the space group as  S,  i-th 
element  as  e i,  site  symmetry  as  si,  and  Wyckoff 

letter as  w i, then the distribution of valid structures 
can be factorized using the chain rule as a product 
of conditional probabilities:
P(S , e1. .n , s1. .n ,w1. .n)=p(S)×p(e1|S)×

×p (s1|e1 , S)×p(l1|s1, e1 , S)×...×
×p (ln|sn , en , ln−1 , sn−1 , en−1 ,... , S )

 

We use a Transformer Encoder [6] model to learn 
the conditional  probabilities.  Each token is  a tuple 
(e i , si ,w i , S ) with  each  component  being 
independently  embedded  and  those  embeddings 
concatenated.  To  learn  the  inter-token 
dependencies, we mask the corresponding parts of 
the token.

Related work Our work is a natural continuation of 
[5],  the  first  generative  model  to  utilize  Wyckoff 
positions.  The  primary  development  is  an 
autoregressive token-based model, as opposed to a 
VAE,  allowing  for  a  better  inductive  bias,  and 
production  of  materials  with  a  varying  number  of 
elements. A recent preprint [7] independently of us 
explores a similar approach. The main difference is 
that  we  rely  on  site  symmetries  as  opposed  to 

Figure 1: Distribution of symmetry groups in the Materials 
Project database [9,11]. Space group number greater than 
1 indicates presence of symmetry beyond lattice 
translation.

Composition: Nd2Al16Cu8
Group: I 4/m m m (139)
  8.9013,   8.9013,   5.1991,  90.0000,  90.0000,  
90.0000, tetragonal
Wyckoff sites:
Nd @ [ 0.0000  0.0000  0.0000], WP [2a] Site [4/m2/m2/m]
Al @ [ 0.2788  0.5000  0.0000], WP [8j] Site [mm2.]
Al @ [ 0.6511  0.0000  0.0000], WP [8i] Site [mm2.]
Cu @ [ 0.2500  0.2500  0.2500], WP [8f] Site [..2/m]

Figure 2: Wyckoff representation of 
Nd(Al2Cu)4 (mp-974729)
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Wyckoff  letters.  Site  symmetries  are  symmetry 
operations  defined  independently  of  the  symmetry 
groups,  thus allowing for  a  greater  generalizability 
potential.  We  also  use  encoder  with  masking  as 
opposed to decoder.

Results To evaluate WyckoffTransformer we trained 
it on the 27136 structures in the training part of the 
MP-20 dataset [8,9], using the validation part, 9047 
structures,  for  early  stopping  and  calibrating  the 
sampling temperature. Then we used space groups 
and the first tokens of structures in the test part of 
the dataset to generate 9046 structures. 82% of the 
Wyckoff  representations  our  model  produced  are 
valid  and  can  be  used  to  produce  valid  crystal 
structures under the validity metric commonly used 
to evaluate material generative models [8].

To  evaluate  how  well  the  model  learns  the  data 
distribution, we compare the distribution of high-level 
statistics  between  the  generated  and  test  data, 
depicted in Figures 3 and 4. 

We are working on evaluating the actual stability of 
produced structures using DFT.

Conclusion.  We  propose  an  advanced  flexible 
token-based machine learning model for generating 

novel  materials  that  takes  advantage  of  the 
symmetry of nature. During evaluation, 82% of the 
produced  structures  were  valid,  with  good 
correspondence of the high-level statistics between 
the  generated  and  test  data.  Our  work  naturally 
complements  diffusion-based  approaches  [10],  by 
defining the high-level crystal structure and reducing 
the  number  of  degrees  of  freedom  for  a  later 
relaxation.
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Figure 4: Distribution of the number of Wychoff sites in 
generated data and test part of the MP-20 dataset

Figure 3: Distribution of the number of unique elements in 
the generated data and test part of the MP-20 dataset
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