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Abstract 
 

Amorphous boron nitride compounds 
present a great potential for several applications due 
to their superior stability, good mechanical 
properties and ultralow dielectric constant. 
Moreover, they can be grown at lower temperatures 
(65 – 400 ºC) than their crystalline counterparts over 
large areas and on various substrates [1-3]. 
However, the morphology, properties and 
performance of the aBN films and devices severely 
depend on the growth conditions. The high number 
of parameters and diverse possible structures make 
an exploration solely based on experiments very 
expensive and time-consuming. Hence, a systematic 
theoretical characterization of aBN structures is 
needed to understand their full potential and 
determine the best possible approach to produce 
aBN morphologies for several applications. 

Atomistic simulation methods such as DFT 
and MD simulations with empirical interatomic 
potentials have been deployed to understand the 
diverse structure of the material and thermal, 
mechanical and electronic properties of the material. 
However, the amorphous nature of the material 
limits the accuracy and usefulness of these 
simulations. While empirical interatomic potentials 
are fast and efficient to simulate the aBN films, they 
are not accurate enough to describe the local 
environment of amorphous materials. On the other 
hand, DFT simulations can provide very detailed and 
accurate picture of the material, however, they are 
severely limited to the small system sizes, which 
unfortunately cannot represent the whole 
amorphous structure. Machine learning interatomic 
potentials can be a bridge between these two 
realms, they can offer DFT-level accuracy with a 
much lower cost. Gaussian approximation potentials 
(GAP) use Gaussian Process Regression (GPR) to 
learn local atomic properties through descriptors that 
transforms Cartesian atomic coordinates into stable 
representations to reach DFT level accuracy with a 
considerably low cost [4, 5]. This approach has been 
effectively employed to model carbon [4], silicon [5], 
and BN compounds [6-8] among others. 

Here, we will present a systematic 
theoretical analysis to screen out possible realistic 
morphologies as a function of growth parameters, 
such as temperature, quenching rate and presence 
of dopants, and their corresponding thermal and 

mechanical properties using classical molecular 
dynamics simulations. We ensure the reliability of 
results by introducing Gaussian Approximation 
Potentials which are trained on a large dataset of 
atomic structures generated by ab-initio calculations. 
We found that some level of dopants and growth 
parameters cause a significant change in structural 
properties of aBN, which is strongly reflected in the 
resulting mechanical properties and stability of the 
compounds. The extensive simulations of a large 
quantity of possible structures presented in this work 
will guide experimental research and provide trends 
of scaling behavior as a function of experimentally 
controllable parameters. 
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Figure 1. C contaminated aBN film [6]. 
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