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High-Entropy Alloys (HEAs) are a novel class of 
materials involving many principal elements. They 
offer a broad range of applications beyond traditional 
low-entropy alloys, by combining unique properties 
like strength, ductility, corrosion resistance, thermal 
stability, etc. [1,3], as well as fine-tuned catalytic 
behavior [4,6], all in one material. However, these 
unique properties derive from specific elemental 
compositions, stoichiometries and geometries, and 
so are not easily predicted due to their vast space of 
complex, combinatoric possibility.  

Therefore, many have turned to machine learning 
(ML) methods utilizing neural networks (NNs) to 
learn chemical patterns in experimental and 
theoretical data and hence infer predictive design 
with significant accuracy [7,9]. Yet the bottleneck for 
data-driven predictive models is of course data 
acquisition.  

Due to the immense scale of the combinatoric space 
available to HEAs, no straightforward method exists 
for exploring these possibilities exhaustively. ML 
methods work to reduce this possibility space given 
specific design parameters, however, only recently 
have more advanced techniques been applied 
together with NNs to further improve efficiency 
[10,12].  

To this end, our work addresses this bottleneck. It 
expands upon the research from a theoretical 
standpoint, by demonstrating how one can engineer 
a feedback loop between structures generated and 
structures validated within an active learning 
algorithm (ALA) [13]. As proof-of-concept we focus 
on high-entropy clusters HECs, rather than bulk or 
substrate alloys, which have advantages in their 
high surface-to-volume ratio, allowing for a wide 
range of coordination and hence reactivity for novel 
catalytic design [14,16]. The ALA combines a 
genetic algorithm (GA) for generating novel 
structures and density functional theory (DFT) for 
validating said structures. We explore 6 elements, 
Ag, Au, Cu, Ni, Pd, Pt, and show that one can 
reliably predict HEC energies and forces at the 
quantum level using deep convolutional NNs in a 
highly efficient and automatic method. 
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Figure 1. (a) Mean absolute error on prediction loss for all 

datasets, energies, and forces. (b) Low-to-high entropy 
predictive extrapolations. 

 
 
 
Figure 2. Generated and validated clusters showcasing 
geometric, compositional, and stoichiometric preferences. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


