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In  the  framework  of  battery  research,  core-level 
spectroscopies are established strategies to assess 
the  evolution  and  composition  of  the  Solid 
Electrolyte Interphase (SEI). While these techniques 
provide valuable insights into atomic and electronic 
structures, their interpretation in complex systems is 
not straightforward, emphasizing the importance of 
theoretical  insights  from  ab-initio  approaches.  On 
the other hand, the time required for computing an 
X-ray spectrum scales linearly  with  the number of 
non-equivalent  atoms,  becoming  prohibitively 
expensive  for  complex  amorphous  materials.  This 
drawback  can  be  addressed  by  employing  a 
surrogate model that combines the precision of ab 
initio methods with computational efficiency [1]. We 
trained  machine-learning  (ML)  models  based  on 
Kernel  Ridge  Regression  (KRR)  [2]  and  Neural 
Network  (NN),  using  atom-density  descriptors  for 
predicting  X-ray  Photoelectron  Spectroscopies 
(XPS), by using core-electron Binding Energies (BE) 
as the target quantity. A comprehensive automated 
AiiDA  workflow  [3],  integrating  first-principles  XPS 
simulation  with  sample  sub-selection  via  Farthest 
Point  Sampling  (FPS),  was employed  to  generate 
the critical  amount of  data needed for  the training 
process.  The  ML  models  were  trained  on  a 
representative  dataset  comprising  about  2000 
lithiated  Carbon-based  structures,  previously 
obtained  through  an  evolutionary  algorithm  (EA) 
combined  with  molecular  dynamics  (MD)  and 
clustering techniques [4]. The model was tested on a 
validation dataset  of ~500 structures, achieving an 
accuracy  of  0.1  eV,  consistent  with  the  typical 
experimental resolution of XPS. This approach holds 
promise for further application to complex structures 
relevant to Li-ion battery materials.
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