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Learning the density matrix, a 
symmetry rich encoding of the 
electronic density. 
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In the most recent years, the electronic density has
been  getting  attention  as  a  target  for  machine
learning  (ML)  models  due  to  the  amount  of
information  it  contains.  In  fact,  density  functional
theory  (DFT)  proposes  that  all  ground  state
electronic properties of an atomic system should be
inferable  from  it.  The  last  advances  in  ML
interatomic  potentials  have  shown  that  taking  into
account  the  equivariance  of  the  data  (e.g.  forces
should  rotate  when  the  system is  rotated)  greatly
enhances the learning capacity while needing less
data to train [1-2]. In this context, equivariant models
that  predict  the  electronic  density  have  quickly
appeared [3-4]. These models predict scalar values
on  a  real  space  grid  or  coefficients  for  a  density
fitting  expansion.  DFT  codes  with  atom-centered
basis sets, however, compute the electronic density
by  products  of  orbitals.  The  coefficients  of  these
products  follow  the  equivariance  of  products  of
spherical harmonics,  which is of  higher order than
the target values for the previous approaches. In our
work, we target the density matrix,  which contains
these coefficients. By doing so, we force the model
to  learn more meaningful  details  about  the atomic
interactions. The computation of the density matrix
scales  linearly  with  system  size  and  the
representation is more compressed than that of a 3D
grid. In this talk, we present the architecture of our
models,  as  well  as  the  results  obtained  in  some
common benchmarks, which are very similar to the
state of the art grid-based predictions. We also show
how the predicted densities can be used to compute
other  properties  such  as  energies  or  as  an  initial
guess to accelerate DFT.
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Figures

Figure 1. A depiction of the density matrix in two different
orientations  of  a  water  molecule.  The  rotation  on  the
molecule also results  in  a rotation on the matrix,  which
means that the matrix is equivariant.  Therefore,  we can
use an equivariant model to machine learn it.


