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Machine learning methods are now integral to 
materials research thanks to the increasing 
availability of curated datasets containing structural 
and electronic data derived from quantum-
mechanical calculations. Also, the accessibility and 
user-friendliness of Machine Learning algorithms 
and software have extended their utility to a broader 
scientific community. Machine Learning has been 
mostly used for predictive purposes. Common 
examples of such applications to Materials Science 
include predicting a material's crystal structure or 
band gap. An ultimate goal for Machine Learning, 
however, is to build models that can go beyond 
prediction, with scientific concepts being discovered 
via descriptive models. This is a formidable task, 
either because the feature space is too large, or 
because the physical mechanisms behind a specific 
phenomenon are unknown, barely understood or 
complex. Some cases of success have been 
reported, including some related to Materials 
Science. In this work, we use interpretable Machine 
Learning methods to analyze a fundamental 
property of semiconductors that lacks a detailed 
understanding: the reason why some 
semiconductors have a direct band gap while others 
have an indirect one. In semiconductors, the top of 
the valence band (representing occupied states) and 
the bottom of the conduction band (representing 
empty states) are separated by an energy gap. The 
top of the valence band and the bottom of the 
conduction band can be located at different 
momentum k-wavevectors (i.e., indirect band gap) or 
at the same k-wavevector (i.e., direct band gap). 
Determining the type of band gap is relevant for 
semiconductor applications. For instance, indirect 
band gap materials are usually not suitable for 
applications in optoelectronic devices because the 
absorption or emission of a photon requires an 
electron-lattice momentum exchanged, and such 
two-step process is less likely to occur. The most 
used material in the microelectronics industry, i.e. 
silicon, has an indirect band gap and thus is not 
suitable for optoelectronic devices such as light 
emitting diodes (LEDs). Transforming indirect band 
gap materials into direct band gap ones is still 

challenging. Common strategies for tuning indirect-
direct band gaps include alloying, exploring strains, 
and quantum confinement. The directness of the 
band gap is not difficult to determine, either 
theoretically or experimentally, as discussed in 
fundamental physics textbooks. However, no unified 
theory exists to explain why one material has a 
direct or an indirect band gap. Semiconductors 
encompass a variety of materials and crystal 
structures, from simple diamond structures such as 
Si to perovskites, which contain at least three 
different types of atoms and many structural 
distortions that can change their properties. To the 
best of our knowledge, only a couple of works have 
focused on the explanation of the band gap 
directness in semiconductors. Yuan and 
collaborators [1] focused on Zincblende 
semiconductors, and have shown that materials with 
cations with occupied d-levels tend to have direct 
band gaps owing to the symmetry of the zincblende 
lattice. In the zincblende point group, the deep d-
band interacts with the VB/CB at the Γ, L and X 
high- symmetry points in the reciprocal space 
according to wavefunction symmetry at this point 
which is dictated by their symmetry at the k-point 
and the band symmetry representation. The d-bands 
do not interact with the bottom of the conduction 
band at the Gamma point. This means that in the 
presence of occupied d-orbitals, the band repulsion 
at other k-points leads the CB higher in energy with 
respect to the Gamma point, which is kept fixed 
regardless the presence of d-orbitals due to the lack 
of interaction. This mechanism controls the 
direct/indirect gap for this specific crystal structure. 
In another paper, Choubisa and collaborators [2] 
proposed general rules to explain when a material 
has a direct or indirect band. The rules include the 
occupation of p orbitals, the position of the LUMO 
and the electronegativity of the constituent atoms. 
As we will show below, our rules are considerably 
different from these, providing new ways to design 
direct or indirect band gap materials. Herein, we 
conduct a broad analysis using data science and 
interpretable Machine Learning methods such as 
Decision Trees (DT) and Random Forests (RF). In 
particular, we perform a descriptive analysis using 
the VAX method [3], extracting Jumping Emerging 
Patterns (JEPs, descriptive logic rules) from 
Machine Learning models, and then look for causal 
relations or insights to explain why a material has a 
direct or indirect band gap. VAX is able to produce 
images such as the one shown in Figure 1, which 
are used in the interpretation analysis. Our ML 
models use a dataset extracted from the Materials 
Project (~10000 entries) and we’ve used atomic and 
structural features. Our findings indicate that the 
directness of the band gap depends on the 
symmetry of the different materials. No general 
pattern (rule) was encountered which would apply to 
all structural families of materials. However, if we 
divide the materials in smaller groups of compounds 
with similar symmetries (e.g, Zincblende, Wurtzite, 
Rock Salt, and Perovskite structures), VAX 
generates specific patterns that explain their 
bandgap directness. Specifically, we recovered the 
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known result for Zincblende structures, i.e., the 
existence of d orbitals. Furthermore, we have also 
found that relative energies of highest occupied 
states determine the direct–indirect bandgap 
transitions in other structures. We believe that these 
results demonstrate that explainable machine 
learning is promising to advance the understanding 
of physics problems.[4] 
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Figures 
 

 
Figure 1. Representative diagram generated by the VAX 
method for the Zinc Blende materials. Lines indicate the 
patterns (rules) generated, whereas the columns 
represent the most important features. Blue boxes indicate 
indirect band gap materials, and orange indicates direct 
band gap materials. In this specific case, we observe that 
the number of valence electrons of the anion is important 
to separate the two groups. More information can be 
obtained in Ref. [4]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


