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π-conjugated molecules contain chains or rings of 
alternating single and double bonds which 
enable delocalisation of π electrons due to the 
overlap of adjacent p-type orbitals. Conjugated 
systems have many interesting optical and 
electronic properties that make them popular 
candidates for organic electronics, such as high 
charge transport Organic Semi-Conductors and π-
conjugated polymers, which are vital for devices like 
Organic Photovoltaics (OPVs) and Organic Field-
Effect Transistors (OFETs) [1]. π-conjugated 
materials are lightweight, low-cost, flexible, and have 
tuneable band-gaps, but such versatility comes at 
the cost of an extremely large design space which 
requires a combination of active-search and high-
throughput virtual screening to study [2, 3]. 
 
The electronic structures of simple chain-like organic 
molecules consist of easily separable local 
environments, so they are not as rich nor diverse as 
their conjugate counterparts. For example, an α-
amino acid called Isoleucine contains 3 of the most 
common terminating functional groups (RCOOH, 
CH3, NH2), as shown in Fig. 1. The electronic 
structures of such molecules are very localised and 
predictable; the bond lengths throughout the 
molecule will fall within a small range of values. In 
contrast, conjugated molecules are extremely 
delocalised due to the overlap of adjacent p-orbitals, 
which means that bond lengths and atomic 
interactions are not as easily quantifiable. For a 
machine learning algorithm to predict the electronic 
structure of Isoleucine, it only needs to learn the 
local structure of the terminal groups and how they 
are stitched together, as the terminal group and their 
connecting fragments will be very similar across 
different molecules. This simplifies the learning task 
and means that most ‘unseen’ test molecules 
containing these groups will lie within the 
interpolative domain space. On the other hand, 
delocalised conjugated systems demand a 
sufficiently large and diverse training set to cover 
their greater combinatorial space. However, even 
this is no guarantee for training success, as 
appropriate descriptors that can capture the 
intricacies of the delocalised electronic structure are 
required.  
 
There are many organic molecule databases, with 
the QM7 and QM9 databases being the most 
commonly used benchmarks for machine learning 
applications [4]. However, the QM9 database only 
has small organic molecules of up to 9 heavy atoms 

of C, N, O, S and Cl, resulting in reduced chemical 
diversity and the lack of any extended π-conjugated 
systems. Furthermore, work by M. Glavatskikh et. al. 
has shown that QM9 has a particular lack of 
chemical diversity when compared to an equivalent 
dataset drawn from the PubChemQC database 
called PC9 [5]. 
 
The limitations of current datasets present a two-fold 
problem for machine learning: First, it restricts their 
generalizability, and second, it means ML struggles 
to predict larger and more complex molecules, which 
often have properties of interest. Consequently, 
there is a need for datasets that contain larger and 
more diverse molecules, such as those with 
extended π-conjugation. However, it is not sufficient 
to just apply current models to a more complex 
dataset, it also calls for the coincident development 
of physically informed machine learning descriptors 
that are capable of capturing as much system 
information as possible.  
 
In this work, we have derived a dataset from the 
ZINC database that contains 13 million molecules 
that are commercially available [6]. We reduced this 
down to 150,000 molecules by clustering them 
according to unique conjugated cores, with a further 
reduction to 5000 molecules that contain between 
10 to 25 C, N, O heavy atoms. This ensured that 
every molecule had a distinct electronic structure 
which is dictated by their conjugated core, despite 
the presence of any strongly interacting functional 
groups that may branch from the core. 
 
Our aim is to use machine learning to predict the 
Fock matrix (one-electron Hamiltonian) of these 
conjugated cores to the typical accuracy of B3LYP 
Density Functional Theory (DFT), from an initial 
density guess. We do this by leveraging the self-
consistent field (SCF) approach and have developed 
descriptors that use the overlap and density 
matrices in conjunction with an assembly of feed-
forward networks to iteratively optimize the Fock 
matrix, as shown in Fig. 2. This replaces the 
computationally expensive step of estimating the 
Fock matrix from the previous density matrices using 
DFT. The matrix correlation heatmap in Fig. 3 shows 
how the overlap and density matrix block descriptors 
are effective at capturing the local information of the 
electronic structure, while embedding the model into 
an SCF framework allows it to account for non-
locality. 
 
By building a physically-informed machine learning 
model that integrates seamlessly with current SCF 
architecture, we can unite the interpolative power of 
machine learning with the interpretability and 
consistency of physical methods. One can also 
exploit the years of research put into improving 
convergence acceleration techniques for quantum 
chemical methods. Furthermore, curating datasets 
with ever greater diversity is an essential pre-
requisite for developing models that can capture the 
complexity required to predict interesting candidates 
for organic electronic applications.  
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Figure 1. (a) shows the Isoleucine molecule that consists 
of 2 methyl, 1 amino, and 1 carboxylic functional groups, 
all joined by a hydrocarbon chain. These components are 
very localised in electronic structure and ubiquitous across 
many similar molecules. (b) shows a conjugated molecule 
from the ZINC database (ZINC000000033679) with 4 

adjacent rings of carbon and nitrogen over which π-

electrons are delocalised, giving rise to more complex 
electronic structures. Due to their increased non-locality, 
attempts to develop descriptors for electronic structure are 
more difficult for (b)-type molecules. 
 
 
 
 

 

 
 
Figure 2. (a) The overlap of atomic orbitals between two 
atoms can be represented as a matrix block, which can 
then be built up into the full molecular overlap matrix (b). 
By breaking SCF matrices down into their atomwise 
blocks, an assembly of networks, as shown in (c), can be 
trained to predict individual matrix elements of the 
corresponding Fock blocks. This replaces the usually 
computationally expensive DFT step of estimating the 
Fock matrix from the density matrices. 

 
 
 

 
 
Figure 3. This shows the prediction results for the carbon-
carbon pairwise interactions of a 500 molecule test set. 
For example, the C1s-C1s correlation shows how well one 
individual neural network performed in predicting C1s-C1s 
Fock matrix elements for the corresponding input density 
matrix block. This indicates how the density and overlap 
matrix block are effective descriptors of the local electronic 
structure.  


