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Characterizing the optoelectronic properties of 
inorganic semiconductor materials with first 
principles methods such as Kohn-Sham Density 
Functional Theory (DFT) is crucial for optoelectronic 
and energy applications, for example photovoltaics 
or microelectronic devices. Using DFT and hybrid 
exchange-correlation functionals is usually sufficient 
to obtain reliable band gap and optical properties 
values in accordance with experiments, but this 
methodology requires significant supercomputer 
simulation time, even for crystals structures with few 
atoms in the unit cell. Thus, when trying to study the 
optoelectronic properties of solid solutions, since 
these compounds feature unit cells with a large 
number of atoms (hundreds or thousands), standard 
DFT computations are not feasible and other 
methodologies, usually less accurate, should be 
used. In this work we are interested in studying the 
solid solutions of a novel family of inorganic 
materials, the chalcohalide anti-perovskite 
compounds (CA) [1]. These compounds present the 
following chemical expression Ag3BC (where B=S, 
Se, and C=Br, I) and they are expected to be great 
candidates for energy applications [2], helping with 
the transition towards a more sustainable and 
greener future. We previously characterized the 
optoelectronic properties of the pure compounds of 
the family with first principles methods, revealing 
giant electron-phonon interactions effects (thermal 
effects) [3] in the band gap values. In order to 
overcome this obstacle and achieve a good 
agreement with experiments, we performed several 
ab-initio molecular dynamics simulations (AIMD) at 
various temperatures, and computed the thermally 
re-normalized band gap as the mean band gap of 
different uncorrelated states reached with the AIMD. 
Proceeding this way, the simulations took one 
hundred times more computational time than without 
taking into account the electron-phonon interactions. 
Therefore, it is impossible to take into account the 
thermal effects in the optoelectronic properties of CA 
solid solutions using standard DFT methodologies. 
Here is where advanced machine learning 
methodologies could help us to study such a 
complex problem. We propose using crystal graph 
neural networks (CGNN) [4]. These are graph neural 
networks that can be used to predict properties of 
crystal structures. The unit cell of a material can be 
mapped to a graph structure that encodes the 

periodicity of the unit cell as well as the main ion 
chemical properties (atomic number, atomic mass, 
ionic radius, etc.) and chemical bonding information 
(Euclidean length of the bonding). Fig.1 represents 
this. Using data from the Materials Project database 
and our own DFT results we trained a model 
capable to predict band gaps for CA solid solutions, 
without taking into account thermal effects. In order 
to consider these effects, we decided to apply the 
same strategy that we used for pure compounds. As 
it would not be possible to perform AIMD of the solid 
solutions due to their big unit cells, we decided to 
use M3GNet [5] to perform classical molecular 
dynamic simulations with machine learning 
interatomic potentials (MLMD). In order to ensure 
good performance of the MLMD we re-trained 
M3GNet with our DFT data. Computing the band 
gaps with CGNN of several states reached with 
MLMD, we were able to obtain thermally re-
normalized band gaps for CA solid solutions 
consistent with the experiments.  
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Figure 1. Representation of the transformation of a given 
unit cell of a material into a graph encoding chemical 
information. 


