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The rapid progress of Artificial Intelligence (AI) mod-
els and the increasing availability of large open data 
sets of computationally predicted materials proper-
ties opens new possibilities to design novel materi-
als for sustainable technologies. Over the past dec-
ades materials development has increased in speed 
by orders of magnitude, from the early experimental 
methods – to simulations based on physics calcula-
tions – to AI methods utilizing available datasets. 
Interaction potentials based on AI models are now 
part of the standard techniques for materials simula-
tions and have greatly expanded the reach of theo-
retical prediction and characterization. Previous 
advances by Goodall et al. [1], presents a crystal 
structure → property prediction AI model approach 
to high throughput screening of possible crystal 
structures (see figure 2), increasing the speed for 
materials development and discovery compared to 
previous ab-initio physics calculations. The key idea 
in Re. [1] is the coarse-grained approach using 
Wyckoff position representation, making the other-
wise infinite search space of atomic coordinates 
enumerable. However, even with these methods — 
at a computational effort order of magnitudes below 
prior techniques — the vast size of the chemical and 
structural space (the combinatorial wall) of even just 
crystalline materials, makes it intractable to address 
the general inverse design problem (properties → 
crystal structure) via brute-force screening of candi-
date materials. 
 
We develop novel Generative AI (Gen-AI) models 
that starts from a set of materials properties and 
generate structural and chemical information to yield 
a crystalline material, illustrated in figure 1, in an 
approach that bypasses the combinatorial wall en-
countered in other screening efforts. The Gen-AI 
approach in figure 1 can be viewed as a direct 
search to a crystal structure with the sought materi-
als properties, compared to the previous works in 
figure 2 where a model can crawl a space of all pos-
sible structure inputs and predict properties for each 
input until the sought set of properties is found. One 
type of considered models are the diffusion models, 
which is a family of models that have multiple areas 
of application [2]. By using the Wyckoff position rep-
resentation as the structural information, the model 
is created as a forward process and backwards pro-
cess as illustrated in figure 3. In the backward pro-
cess the model is guided towards the sought proper-
ties using a classifier in each step. The forward pro-

cess applies noise that distorts the Wyckoff positions 
until there is only noise left. In the backwards pro-
cess, a model is trained to predict a slightly less 
distorted Wyckoff representation of a structure. Us-
ing the backwards process, a Wyckoff representa-
tion of a crystal structure can be generated from 
noise. The generated structure has a high probability 
to exist due to the nature of the training data. How-
ever, in the unguided backwards process, the gen-
erated crystal structure can have any materials 
properties. Thus, the backwards process is guided 
using a classifier to predict the probability that the 
slightly less distorted crystal structure has the 
sought set of properties.  
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Figure 1. Generative Artificial Intelligence (Gen-AI) model. 
The model takes a set of materials properties as input and 
predicts a structure in a Wyckoff position representation 
corresponding to the input set of properties. Finally, the 
Wyckoff positions are realized within the degrees of free-
dom of the Wyckoff coordinates into the exact coordinate 
space of the atoms, which holds the given sought set of 
materials properties. 
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Figure 2. Crystal structure to materials properties predic-
tion model for high throughput screening of an enumerable 
space of crystal structures in a Wyckoff position represen-
tation. The model crawls the space of all possible struc-
tures as inputs and predicts the materials properties.  
 

 
Figure 3. Description of the principle of the unguided 
diffusion model process. The forward process in the top 
applies noise to a Wyckoff position representation of a 
crystal structure until there is only noise left. The back-
wards process in the bottom consists of training a model 
that predicts a slightly less distorted structure until there is 
a viable crystal structure that has no noise.  
 


