NH₃ and PH₃ Identification Using Graphene based Gas Sensor

Shirong Huang¹

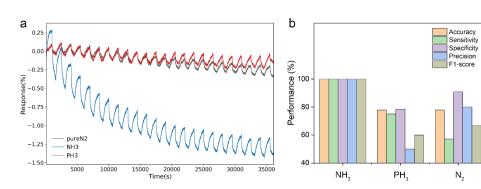
Alexander Croy¹, Bergoi Ibarlucea¹, Gianaurelio Cuniberti^{1,2,3}

¹ Institute for Materials Science and Max Bergmann Center for Biomaterials, TU Dresden, 01062 Dresden, Germany

² Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden, Germany

³ Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany

shirong.huang@tu-dresden.de


Abstract

Both NH₃ and PH₃ are widely used in industrial processes, and yet they are noxious and exhibit detrimental effects on human health. ¹ A variety of gas sensors have been developed to detect and monitor the NH₃/PH₃ gas in an industrial environment. ²⁻⁴ Despite the remarkable progress of sensors development, there are still some limitations, for instance, the requirement of high working temperature, and the dedication to solely individual gas monitoring. ⁵ Here we develop an ultrasensitive, highly discriminative platform for the detection and identification of NH₃ and PH₃ at room temperature using a graphene nanosensor. Graphene is exfoliated and successfully functionalized by a copper phthalocyanine derivate (CuPc). In combination with efficient machine learning techniques, the developed graphene nanosensor demonstrates an excellent gas identification performance even at ultralow concentration, 100 ppb NH₃ (accuracy-100%, sensitivity-100%, specificity-100%) and 100 ppb PH₃ (accuracy-77.8%, sensitivity-75%, and specificity-78.6%), as shown in Figure 1. Molecular dynamics simulation results reveal that the attachment of CuPc on the graphene surface facilitates the adsorption of NH₃ owing to hydrogen bonding interactions. This smart-sensor prototype paves a path to design highly discriminative, ultrasensitive, miniaturized, non-dedicated gas sensors towards a wide spectrum of industrious gases.

References

Figures

- [1]. Wu Z, et al. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors and Actuators B: Chemical 178, 485-493 (2013).
- [2]. Wu H, Ma Z, Lin Z, Song H, Yan S, Shi Y. High-Sensitive Ammonia Sensors Based on Tin Monoxide Nanoshells. Nanomaterials (Basel) 9, (2019).
- [3]. Huang S, et al. Highly sensitive room temperature ammonia gas sensor using pristine graphene: The role of biocompatible stabilizer. Carbon 173, 262-270 (2021).
- [4]. Panes-Ruiz LA, et al. Toward Highly Sensitive and Energy Efficient Ammonia Gas Detection with Modified Single-Walled Carbon Nanotubes at Room Temperature. ACS Sens 3, 79-86 (2018).
- [5]. Kumar R, Liu X, Zhang J, Kumar M. Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials. Nano-Micro Letters 12, (2020).

Figure 1. (a) Sensor response towards 100 ppb analyte gas (NH₃, PH₃ and N₂). (b) Sensor performance metrics towards analyte gas at their 100 ppb concentration using hold-out cross-validation method.