Anisotropic thermal conductivity of layered 2D SnSe₂

Emigdio Chavez-Angel¹

Peng Xiao^{1, 2}, Stefanos Chaitoglou³, Marianna Sledzinska¹, Athanasios Dimoulas³, Clivia M. Sotomayor Torres^{1, 4} and Alexandros El Sachat¹

¹ Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain

² Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

³ National Center for Scientific Research "Demokritos", 15310 Athens, Greece

⁴ ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain

emigdio.chavez@icn2.cat

Abstract

Thickness, temperature and degree of thermal anisotropy are critical parameters that affect the performance of layered two-dimensional materials in nano-electronics. Here, we systematically study the in-plane and cross-plane thermal conductivity of $SnSe_2$ films of varying thickness (16-190 nm) using two-laser Raman thermometry and frequency domain thermo-reflectance, respectively. We found that both in-plane and cross-plane thermal conductivities monotonically decrease with decreasing film thickness, showing a maximum of 2.5-fold reduction compared to the bulk values. The thermal conductivity anisotropy ratio obtained directly from the experiments was found to be thickness-independent and approximately of ~ 8.4. In addition, we find that the temperature-dependence of the in-plane thermal conductivity gradually decreases as the film thickness decreases. Upon increasing temperature, from 300 K to 473 K, we show that the in-plane thermal conductivity can be reduced more than a factor of 2. Furthermore, using the mean free path reconstruction method, we found that phonons with MFP ranging from 1-53 and 1-30 nm, contribute to 50% of the total in-and cross-plane thermal conductivity, respectively. These calculations are in very good agreement with previous theoretical prediction [1-2]. Our results provide guidelines for the design and thermal management of emerging two-dimensional electronic, optoelectronic, and thermoelectric devices.

References

[1] Y. Ding et al. J. Phys. Chem. C 2017, 121 (1), 225-236

[2] H. Wang et al. RSC Adv. 2017, 7 (14), 8098-8105

Figures

Figure 1. (a) Measured in-plane (black squares) and cross-plane (red circles) thermal conductivities of exfoliated SnSe2 films with thickness between 16 to 190 nm (b) Normalized accumulated in-plane and cross-plane thermal conductivity as a function of the phonon MFP extracted from experimental thermal conductivity.