Symmetry protection of N-photon angular momentum states when interacting with cylindrical systems

J. Lasa-Alonso,^{1,2} M. Molezuelas^{1,2}

J. J. M. Varga, ^{1,2}G. Giedke, ^{2,3} and G. MolinaTerriza^{1,2,3}

¹ Materials Physics Center (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, Donostia 20018, Spain.

² Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain.

² IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao 48013, Spain.

jonQNanoLab@gmail.com / mmolezuelas001@ikasle.ehu.eus

In the interaction with a cylindrical sample, the z-component of the total angular momentum of light, *m*, is a conserved quantity, whereas other quantum numbers are not (as λ , the quantum number related to helicity). Importantly, this helicity-angular momentum framework has recently allowed the study of quantum light matter interactions in nanoholes, for N = 2 and considering states with *m* = 0 [1].

In this work we show a generalization of this construction for N-photon states employing single photons with both m = 0 and also $m \neq 0$. Moreover, we find that N-photon symmetry protected states, that is states that are protected in the interaction with any cylindrical scatterer, can be constructed in a very general way.

Finally, we show examples of symmetry protected 2 and 3-photon states that can be found using input modes with $m \neq 0$, even when the input photons are in different modes with different angular momenta.

References

[1] A. Büse et al. Symmetry Protection of Photonic Entanglement in the Interaction with a Single Nanoaperture. Phys. Rev. Lett. 121, 173901 (2018).