What will stop the exfoliation of MoS₂

Michal Bodík1

Adriana Annušová^{1,2}, Matej Jergel¹, Eva Majková^{1,2} and Peter Šiffalovič^{1,2}

- ¹ Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- ² Centre of Excellence for Advanced Materials Application, Dúbravská cesta 9, 845 11 Bratislava, Slovakia

Michal.Bodik@savba.sk

The liquid-phase exfoliation (LPE) is a technique with the potential for large scale production of 2D materials [1]. One of the promising 2D materials for applications in electronics, sensors, Li-ion batteries, and others is MoS_2 [2]. In our contribution, we will present a limitation of the conventional LPE process. The oxidation depends on the initial concentration of MoS_2 powder and the type of solution, in which the powder is dispersed. If the initial concentration of the MoS_2 powder exceeds the critical value of approximately 12 mg/ml, the oxidation of MoS_2 towards MoO_x nanoparticles occurs (Figure 1). In our presentation, we will discuss the fundamental limitation of the LPE process and analyze the generated MoO_x nanoparticles.

Acknowledgments

We acknowledge the financial support of the APVV-15-0641 project.

References

- [1] Tao, H. et al. Scalable exfoliation and dispersion of two-dimensional materials-an update. Phys. Chem. Chem. Phys. 19, 921–960 (2017).
- [2] Gupta, A., Sakthivel, T. & Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015).

Figures

Figure 1. The MoO_x nanoparticles produced from 60 mg/ml of MoS₂ in (from left) NMP, water, 45% ethanol in water.