Mechanical and electrical properties of bio-based PA410/CNT nanocomposites modified with a bio-TPE

Nora Aranburu¹

Itziar Otaegi², Gonzalo Guerrica-Echevarría³

^{1,2,3} Department of Polymer Science and Technology and POLYMAT, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 San Sebastian, Spain

nora.aramburu@ehu.eus

Bio-based polymeric nanocomposites (NCs) were obtained by melt mixing a polyamide 4,10 (PA410) and a thermoplastic elastomer (impact modifier), both commercially available and partially bio-based, with two different commercially available multi-walled carbon nanotubes (CNTs), namely Nanocyl NC7000TM and PlasticylTM PA 1503 (a masterbatch based on PA6 and Nanocyl NC7000TM CNTs). Mechanical and electrical properties of the resulting NC systems –i.e. PA410/PEBAX/CNT and PA410/PA6/PEBAX/CNT, respectively–were studied. Deformation properties –i.e. ductility and impact resistance– were improved after TPE addition as expected [1], with respect to the unmodified NC systems (Figure 1). A reduction in the percolation concentration (p_c) was also observed in both systems (Figure 2), probably due to a double percolation effect [1, 2].

References

- [1] Gonzalez, I., Eguiazabal, J.I., and Nazabal, J. Composites, Part A, 2012. 43(9): p. 1482-1489.
- [2] Sumita, M., et al. Colloid and Polymer Science, 1992. **270**(2): p. 134-139.

Figure 1. Impact strength of PA410/PEBAX/CNT (open triangles) and PA410/PA6/PEBAX/CNT (filled triangles) NCs.

Figure 2. Electrical conductivity of unmodified PA410/CNT (x) and PA410/PA6/CNT (•) and modified PA410/PEBAX/CNT (open triangle) and PA410/PA6/PEBAX/CNT (filled triangle) NCs.