Local chemical modification of MoS₂ layer using AFM lithography

DaYea Oh¹

Duk Hyun Lee¹, Gwang Taek Oh¹, Ji Hoon Jeon¹, and Bae Ho Park¹

¹ Division of Quantum Phases and Devices Department of Physics, Konkuk University, Seoul 05029, South Korea

ybnormar@gmail.com

As the demand for nano scaled devices is increasing, Two dimensional (2D) materials have been theoretically and experimentally investigated in the last few decades. Among 2D materials, TMD(Transition Metal Dichalcogenide) materials which have layered structure shows extensively magnetic, electrical, and mechanical properties [1]. Especially, hydrogenation of MoS₂ by high temperature and MoS₂ irradiated by proton shows unexpected ferromagnetic behavior which would lead to new spintronics devices [2].

In this works, we fabricate locally hydrogenated or oxidized MoS₂ using AFM lithography and confirm specific magnetic properties. Through Raman measurement, we identify that the pure MoS₂ surface modify hydrogenated or oxidized one under different lithographic condition. Also, Magnetic Force Microscopy (MFM) measurement support that hydrogenated or oxidized MoS₂ using AFM lithography shows novel magnetic properties comparing with pristine MoS₂. This result may attribute to the H or O atoms deposited on MoS₂ defect by AFM lithography.

References

- [1] S. Ahmed. *et al.* Journal of Alloys and compounds **746** (2018) 399-404
- [2] S.W. Han. et al. Physical Review Letters **110** (2013) 247201-5

Figures

Figure 1. (a) Schematic image of AFM lithography method and (b) AFM image of hydrogenated or oxidized MoS_2 using AFM lithography

Figure 2. MFM image of hydrogenated MoS_2 applied 1T or -1T