

Dresden, Germany June 05-09, 2-17

Efficient Hydrogen Production by Tailoring Electrocatalysts

with Fast Water Dissociation Kinetics

Jian Zhang, Xinliang Feng

Chair for Molecular Functional Materials, cfaed, TU Dresden, Dresden, Germany

June 06, 2017

Introduction

Hydrogen evolution reaction (HER):

Acidic media: $2H^+ + 2e^- \longrightarrow H_2$

Alkaline media: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Noble metal Pt:

Overpotential: 30 mV at 10 mA/cm²;

Tafel slope = 30 mV/decade.

M. G. Walter, et al, Chem. Rev. 2010, 110, 6446-6473.

State-of-the-art

I. Advanced Pt-based HER catalysts

(i) Pt-based hybrid catalysts.

Science, 2011, 334, 1256.

II. Pt-free catalysts

(i) Metal alloys-based HER catalysts

Electrochimica Acta, 2000, *45*, 4151; *Energy Environ. Sci.*, 2011, *4*, 3573; *ACS Catal.*, 2013, *3*, 166.

(ii) Metal oxides, chalcogenides, carbides, phosphides, nitrides-based catalysts

Nat. Commun., 2014, *5*, 4695; *Science*, 2007, *317*, 100; *Nat. Commun.* 2016, *7*, 11204;

Angew. Chem. Int. Ed., 2012, 51, 6131; J. Am. Chem. Soc., 2013, 135, 9267.

(iii) Carbon-based catalysts

Nat. Commun., 2016, 7, 10667; Nat. Commun., 2015, 6, 7992; Nat. Commun., 2015, 6, 8668; Angew. Chem. Int. Ed., 2014, 126, 4461.

Single-crystal

oure metals (O)

0.6

0.8

Pd overlayers (

-0.2

H₂O

0

 $\Delta G_{\rm H}$ (eV)

OH OH OH

0.2

0.4

Ni(OH)

Motivation

R. Subbaraman, et al, Science, 2011, 334, 1256; R. Subbaraman, et al, Nat. Mater., 2012, 11, 550-557.

Motivation

Interface Engineering

Interface engineering to improve the chemisorption interactions of hydrogen and oxygen-containing intermediates on the catalysts, facilitating the dissociation of water molecules into H_2 and O_2 .

J. Zhang, et al, Angew. Chem. Int. Ed. 2016, 128,6814.

MoS₂/Ni₃S₂ heterostructures

Ni 2p

860

850

MoS₂ nanosheets (~7.8%) on Ni₃S₂

Interfaces between the (002) and (100) facets of MoS₂ and the (101)

nanoparticles

MoS,/Ni,S, heterostructures MoS/Ni₁S₂ heterostructures Ni₁S, nanoparticles MoS, nanosheets Mo 3d Mo 3d Intensity (a. u.) Intensity (a. u.) Ni 2p12 890 880 870 235 230 225 240 Binding energy (eV) Binding energy (eV) and (110) surfaces of Ni₃S₂

The XPS shifts strongly suggest the existence of strong electronic interactions between Ni₃S₂ and MoS₂, which implies the establishment of coupling interfaces.

DRESDEN

concept

TECHNISCHE UNIVERSITÄT

J. Zhang, et al, Angew. Chem. Int. Ed. 2016, 128,6814.

HER activity

DFT calculations

Engineering active sites

MoS₂ for HER in basic solutions:

 Large kinetic energy barrier of water dissociation on MoS₂ catalysts;
 Strong adsorption interaction of

the formed ⁻OH on MoS₂ catalysts.

MoS₂ catalysts exhibit poor HER activity in basic solution.

R. Subbaraman, et al, *Science* 2011, *334*, 1256-1260;
R. Subbaraman, et al, *Nat. Mater.* 2012, *11*, 550-557.

DFT calculations

Ni doped MoS₂ (Ni-MoS₂):

- The kinetic energy barrier of water
 dissociation was decreased from 1.17 eV on
 MoS₂ to 0.66 eV on Ni-MoS₂;
- The desorption of ⁻OH was facilitated on Ni-Fe-MoS₂;

Dr.	Tao Wang,	Laboratoire	de	Chimie,	CNRS,	France
-----	-----------	-------------	----	---------	-------	--------

	$\triangle G(H_2O) (eV)$	G(OH) (eV)	$\triangle G(H) (eV)$
MoS ₂	1.17	-5.24	0.60
Ni-MoS ₂	0.66	-3.46	-0.10
Co-MoS ₂	0.76	-3.46	-0.06
Fe-MoS ₂	0.96	-3.36	0.13

Morphology

Dr. Pan Liu and Prof. Mingwei Chen, Tohoku University, Japan.

HER activity

Stability

Cp and HER

Electrochemical capacitances (Cp)

HER in 0.5 M H₂SO₄ solution

- Decreased Cp from 0.45 F of MoS_2 to 0.35 F of Ni-MoS₂;
- Overpotential_{at 10 mA/cm2} after Ni doping: 43 mV in 0.5 M H₂SO₄ and 209 mV in 1 M KOH.

The excellent HER activity of the Ni-MoS₂ catalysts originates from **the**

improved HER kinetics and accelerated water dissociation, rather than

the active surface area and hydrogen adsorption property.

Doping content

Ni content in Ni-MoS₂: 13.3 %

Engineering active sites

Growth of MoNi₄

MoNi₄ catalysts

Exposed surfaces: MoNi₄ (200) and MoO₂ (110); The molar ratio of Ni to Mo: 3.84:1.

Dr. Pan Liu and Prof. Mingwei Chen, Tohoku University, Japan.

HER activity

Overpotential at 10 mA/cm²: 15 mV, which is comparable to Pt/C. Tafel slope: 30 mV/decade, suggesting a fast water dissociation kinetics.

HER activity

Strained MoS₂: Li H, et al. *Nat. Mater.* 2015, 15, 48; Ni₂P: Popczun EJ, et al. *J. Am. Chem. Soc.* 2013, 135, 9267; Ni/NiO: Gong M, et al. *Nat. Commun.* 2014, 5, 4695; Mo₂C/graphene: Li J-S, et al. *Nat. Commun.* 2016, 7, 11204. CoPS: Caban-Acevedo M, et al, *Nat. Mater.* 2015, 14, 1245; MoSSe/NiSe₂: Zhou H, et al. *Nat. Commun.* 2016, 7, 12765; Ni-doped carbon: Fan L, et al. *Nat. Commun.* 2016, 7, 10667.

TOF

HER Stability

Large-scale synthesis of MoNi₄ electrocatalysts; Outstanding stability.

Electrolyzer

Combined overpotential: 240 mV at 10 mA/cm².

Active centers

DFT calculations

The energy barrier of the Volmer step is largely decreased to 0.39 eV on MoNi₄, which is even lower than the 0.44 eV for the Pt.

Dr. Tao Wang, Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1.

Conclusions and outlook

- Water dissociation is more important than the H-adsorption in alkaline solution;
- MoNi-based active sites can largely lower the kinetic energy barrier of the Volmer;
- Developing new NiMo-based catalysts with excellent water dissociation kinetics;
- Understanding the alkaline HER mechanism and probe the adsorption states of H_2O , H and OH intermediates.

Acknowledgement

Ulrike Polnick Guangbo Chen Panpan Zhang Gang Wang Faxing Wang Hanjun Sun Tao Zhang Yang Hou Shaohua Liu Prof. Xinliang Feng (TUD) Dr. Tao Wang (CNRS) Dr. Zhongquan Liao (IKTS) Dr. Xiaodong Zhuang (TUD) Prof. Pan Liu (SJTU) Prof. Mingwei Chen (Tohoku University) Prof. Ehrenfried Zschech (IKTS) Dr. Bernd Rellinghaus (IFW) Dr. Darius Pohl (IFW)

Funding Supports

DFG, BMBF, BASF, UPGRADE, Insolcell, ERC NANOGRAPH, ERC 2DMATER, Graphene Flagship, Cfaed Cluster, Talga, ESF

dresden center for **nanoanalysis**

European Research Council Established by the European Commission

MAX-PLANCK-GESELLSCHAFT

Thanks for your attention

Enjoy a nice journey in Dresden