

Dresden (Germany) June 05-09, 2017

Álvaro Díaz Fernández alvarodi@ucm.es

OUTLINE

- □ Why?
- □ State-of-the-art
- Dirac materials
- Our proposal
- **Conclusions**

OUTLINE

□ Why?

- □ State-of-the-art
- Dirac materials
- Our proposal
- Conclusions

Quantum Transport

Copyrighted Material

OXFORD

Semiconductor Nanostructures

Quantum States and Electronic Transport

Thomas Ihn

Copyrighted Material

Ballistic Conductance Fluctuations

Fig. 14.25 Measurement of ballistic conductance fluctuations in a sample consisting of 25 mesoscopic squares, coupled via quantum point contacts. Current is driven from source (S) to drain (D). The sample was patterned using AFM lithography on a two-dimensional electron gas in the Ga[Al]As material system.

B = 0

$$G_{\text{int}} = \sum_{mn} |t_m| |t_n| \cos(\theta_m - \theta_n)$$
Depends on v_F

Quantum Hall Effect (Graphene)

Usual Landau levels

$$E_n = \hbar\omega_c \left(n + \frac{1}{2}\right)$$

• Graphene

$$E_n = \pm v_F \sqrt{2e\hbar|n|}$$

Quantum Hall Effect (Graphene)

OUTLINE

□ Why?

□ State-of-the-art

Dirac materials

Our proposal

Conclusions

Localization of Dirac Electrons in Rotated Graphene Bilayers

G. Trambly de Laissardière,*^{,†} D. Mayou,*^{,†} and L. Magaud*^{,†}

NANO LETTERS

week ending 21 DECEMBER 2007

PHYSICAL REVIEW LETTERS PRL 109, 196802 (2012)

week ending 9 NOVEMBER 2012

Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis

I. Brihuega,¹ P. Mallet,² H. González-Herrero,¹ G. Trambly de Laissardière,³ M. M. Ugeda,¹ L. Magaud,² J. M. Gómez-Rodríguez,¹ F. Ynduráin,¹ and J.-Y. Veuillen^{2,*}

PHYSICAL REVIEW B 83, 205403 (2011) Ś

Symmetry breaking in commensurate graphene rotational stacking: Comparison of theory and experiment

> J. Hicks, M. Sprinkle, K. Shepperd, and F. Wang A. Tejeda A. Taleb-Ibrahimi F. Bertran and P. Le Fèvre W. A. de Heer C. Berger E. H. Conrad

LETTERS

PUBLISHED ONLINE: 29 NOVEMBER 2009 | DOI: 10.1038/NPHYS1463

Observation of Van Hove singularities in twisted graphene layers

Guohong Li¹, A. Luican¹, J. M. B. Lopes dos Santos², A. H. Castro Neto³, A. Reina⁴, J. Kong⁵ and E. Y. Andrei¹*

NATURE PHYSICS | VOL 6 | FEBRUARY 2010 | www.nature.com/naturephysics

109

PRL 109, 196802 (2012)

PHYSICAL REVIEW LETTERS

week ending 9 NOVEMBER 2012

Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis

I. Brihuega,¹ P. Mallet,² H. González-Herrero,¹ G. Trambly de Laissardière,³ M. M. Ugeda,¹ L. Magaud,² J. M. Gómez-Rodríguez,¹ F. Ynduráin,¹ and J.-Y. Veuillen^{2,*}

 $\Delta E_{\rm vHs} \propto v_F(\theta)$

701

Dirac cones reshaped by interaction effects in suspended graphene

D. C. Elias¹, R. V. Gorbachev¹, A. S. Mayorov¹, S. V. Morozov², A. A. Zhukov³, P. Blake³, L. A. Ponomarenko¹, I. V. Grigorieva¹, K. S. Novoselov¹, F. Guinea^{4*} and A. K. Geim^{1,3}

NATURE PHYSICS | VOL 7 | SEPTEMBER 2011 | www.nature.com/naturephysics

scientific scientific **reports**

Fermi velocity engineering in graphene by substrate modification

Choongyu Hwang¹, David A. Siegel^{1,2}, Sung-Kwan Mo³, William Regan^{1,2}, Ariel Ismach⁴, Yuegang Zhang⁴, Alex Zettl^{1,2} & Alessandra Lanzara^{1,2}

OUTLINE

- □ Why?
- □ State-of-the-art
- Dirac materials
- Our proposal
- Conclusions

REVIEW

National Science Review 2: 22–39, 2015 doi: 10.1093/nsr/nwu080 Advance access publication 31 January 2015

PHYSICS

Special Topic: Graphene—From basic science to useful technology

The rare two-dimensional materials with Dirac cones

Jinying Wang, Shibin Deng, Zhongfan Liu and Zhirong Liu $\!\!\!*$

REVIEW ARTICLE

Dirac materials

T.O. Wehling^{a,b}, A.M. Black-Schaffer^c and A.V. Balatsky^{d,e*}

Table 1. Dirac materials indicated by material family, pseudo-spin realization in the Dirac Hamiltonian, and the energy scale for which the Dirac spectrum is present without any other states.

Material	Pseudo-spin	Energy scale	References
Graphene, silicene, germanene	Sublattice	$1 - 3 \mathrm{eV}$	[5,6,17,19,36,37]
Artificial graphenes	Sublattice	$10^{-8} - 0.1 \mathrm{eV}$	[28,29,38–40]
Hexagonal layered heterostructures	Emergent	$0.01 - 0.1 \mathrm{eV}$	[41-47]
Hofstadter butterfly systems	Emergent	0.01 eV	[46]
Graphene–hBN heterostructures in high magnetic fields	C		
Band inversion interfaces: SnTe/PbTe, CdTe/HgTe, PbTe	Spin–orbit ang. mom.	0.3 eV	[48–50]
2D topological insulators: HgTe/CdTe, InAs/GaSb, Bi bilayer,	Spin–orbit ang. mom.	<0.1 eV	[7,8,22,24,51,52]
3D topological insulators: $Bi_{1-x}Sb_x$, Bi_2Se_3 , strained HgTe, Heusler alloys,	Spin–orbit ang. mom.	$\lesssim 0.3 \mathrm{eV}$	[7,8,23,52–55]
Topological crystalline insulators: SnTe, $Pb_{1-x}Sn_xSe$	Orbital	$\leq 0.3 \text{eV}$	[56–59]
<i>d</i> -wave cuprate superconductors	Nambu pseudo-spin	$\approx 0.05 \text{eV}$	[60,61]
³ He	Nambu pseudo-spin	\sim 0.3 µeV	[2.3]
3D Weyl and Dirac SM Cd ₃ As ₂ , Na ₃ Bi	Energy bands	Unclear	[32–34]

VOLUME 16, NUMBER 26

27 June 1966

Two-dimensional massless electrons in an inverted contact

B. A. Volkov and O. A. Pankratov

Pis'ma Zh. Eksp. Teor. Fiz. 42, No. 4, 145-148 (25 August 1985)

PHYSICAL REVIEW B

VOLUME 35, NUMBER 12

15 APRIL 1987-II

Subbands in the gap in inverted-band semiconductor quantum wells

V. Korenman and H. D. Drew

PHYSICAL REVIEW B

VOLUME 37, NUMBER 17

15 JUNE 1988-I

Interface states in band-inverted semiconductor heterojunctions

D. Agassi V. Korenman

phys. stat. sol. (b) 186, K49 (1994)

Subject classification: 73.20 and 73.40

Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, Madrid¹)

Green Function Approach to Interface States in Band-Inverted Junctions

By

F. Domínguez-Adame

VOLUME 37, NUMBER 17

15 JUNE 1988-I

Interface states in band-inverted semiconductor heterojunctions

Two-band model: Dirac-like Hamiltonian

$$\mathcal{H} = v_{\perp} \boldsymbol{\alpha}_{\perp} \cdot \boldsymbol{p}_{\perp} + v_{z} \alpha_{z} p_{z} + \frac{1}{2} E_{G}(z) \beta + V_{C}(z)$$

phys. stat. sol. (b) 186, K49 (1994)

Subject classification: 73.20 and 73.40

Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense, Madrid¹)

Green Function Approach to Interface States in Band-Inverted Junctions

By

F. Domínguez-Adame

OUTLINE

- □ Why?
- □ State-of-the-art
- Dirac materials
- Our proposal
- Conclusions

A. Díaz-Fernández^{1,2,*}, Leonor Chico^{3,4}, J. W. González^{4,5}, and F. Domínguez-Adame^{1,2}

Approximations (can be relaxed):

- $E_{\rm GL} = -E_{\rm GR} = E_{\rm G}$ (symmetry)
- $V_{\rm L} = V_{\rm R} = 0$ (centred)
 - $v_{\perp} = v_z = v$ (isotropy)

A. Díaz-Fernández^{1,2,*}, Leonor Chico^{3,4}, J. W. González^{4,5}, and F. Domínguez-Adame^{1,2}

A. Díaz-Fernández^{1,2,*}, Leonor Chico^{3,4}, J. W. González^{4,5}, and F. Domínguez-Adame^{1,2}

Approximations (can be relaxed):

•
$$F < F_C = \frac{E_G/2}{ed}$$
 ($\approx 170 \text{ kV/cm}$)

A. Díaz-Fernández^{1,2,*}, Leonor Chico^{3,4}, J. W. González^{4,5}, and F. Domínguez-Adame^{1,2}

A. Díaz-Fernández^{1,2,*}, Leonor Chico^{3,4}, J. W. González^{4,5}, and F. Domínguez-Adame^{1,2}

A. Díaz-Fernández^{1,2,*}, Leonor Chico^{3,4}, J. W. González^{4,5}, and F. Domínguez-Adame^{1,2}

Pb_x Sn_{I-x} Te

AT E_g=O

SnTe

PbTe

Quantum-confined Stark effect in band-inverted junctions

A. Díaz-Fernández, F. Domínguez-Adame

A. Díaz-Fernández^{1,2,*}, Leonor Chico^{3,4}, J. W. González^{4,5}, and F. Domínguez-Adame^{1,2}

A. Díaz-Fernández^{1,2,*}, Leonor Chico^{3,4}, J. W. González^{4,5}, and F. Domínguez-Adame^{1,2}

OUTLINE

- □ Why?
- □ State-of-the-art
- Dirac materials
- Our proposal
- Conclusions

Conclusions

- ✓ Before ADF et al.: structural/many-body effects required (experimentally difficult)
- ✓ After ADF et al.: double-gated Dirac materials (experimentally simpler)

alvarodi@ucm.es