Gold monolayer islands on a polar AlN(0001) surface

Xavier BOUJU

CEMES-CNRS Toulouse, France

Goal: metallic nano-islands on an insulator molecular electronics applications

- Acting as electron reservoirs
- Relatively flat (one monolayer height ideally)
- Local-probe based methods: observation / manipulation

RAND SUD - OUEST

- Keep intact the electronic properties of a molecule
- Atomic control of the surface

X. BOUJU CEMES-CNRS

III-V semiconductor with Eg = 6.2 eV

MBE growth (NH₃) ~100 nm 2H-AIN on a 4H-SiC substrate @ 990 °C

Dresden o

NanoSciences

nc-AFM images @ RT

a = 6.22 Å

PAMS

X. BOUJU

CEMES-CNRS

Polar materials and electrostatic divergence, compensation

J. Goniakowski et al., Rep. Prog. Phys. 71, 016501 (2008)

resden o

C. Noguera, J. Phys.: Condens. Matter 12 (2000) R367-R410

NanoSciences

X. BOUJU CEMES-CNRS

Polar materials and electrostatic divergence, compensation

CEMES

Second order compensation: Relaxation: surface dipoles

$$\sigma'' = \sigma \frac{R_1}{2(R_1 + R_2)}$$

(2×2)-N_{ad} reconstruction

What is the atomic structure of the gold islands?

What is the stabilization mechanism of gold on this insulating substrate?

Au 2D monoatomic high islands on AlN(0001) the experimental structure at **RT**

NC-AFM at RT: observation of an hexagonal pattern with A=2.6 \pm 0.1 nm and angle close to 7°

In situ RHEED after gold deposition in the MBE

Au[94130]AIN[2130]

Reconstructed RHEED pattern obtained by summation from 6 to 11° after AIN[21-30]

Au 2D monoatomic high islands on AlN(0001): atomically resolved structure at 4K

 \Rightarrow Sample was transferred under UHV for low temperature characterization with Qplus ncAFM

 \Rightarrow Observation of two moiré with atomic resolution

1.2mm

Moiré M1

The topography contrast is reversed which was already observed in Qplus with very small amplitude

X. BOUJU CEMES-CNRS

EXPERIMENTAL RESULTS

1 - Distance between nearest neighbor :

 $d_{Au-inplane} = 2.8 \pm 0.1 \text{ Å}$

(gold bulk value : 2.88 Å)

2 - Hexagonal modulation (moiré) :

12.6 ± 0.5 Å, angle 8.8 ± 1°

3 - Supercell parameters :

 $a = b = 21.9 \pm 0.2 \text{ Å}$, alpha = 12.8 ± 1°

Model for the moiré M1

CEMES

DFT calculations: model on (2x2)-Nad and bare AIN(0001)

extracting position

Calculate d_{Au-inplane} values

Experiment and DFT comparison for d_{Au-inplane}

		-	
d Au-inplane	Experiment	DFT-Au-U1t	DFT-Au-M1t
Minimum (Å)	2.01	2.70	2.44
Maximum (Å)	3.16	2.77	3.15
Mean (Å)	2.74	2.73	2.74
RMS	2.76	2.73	2.75
Std Deviation (Å	Å) 0.255	0.0166	0.153

Dispersion matching

GOOD CONCLUSION: the N atoms of the (2x2)-Nad stay below the Au layer

X. BOUJU **CEMES-CNRS**

1 - the surface charge on the 2H-AIN(0001) (2x2)-Nad surface

For 2H AIN(0001) polar direction :

 $\sigma_s = -\sigma/4$

Bader charge analysis

(in [e] and [e] per (1x1) unit surface for σ_s)

Atom	1	2	3	4	$\sigma_{\rm S}$
Ns	-2.201				-0.550
Al ₀	2.322	2.322	2.322	2.348	
N ₀	-2.386	-2.385	-2.385	-2.305	-0.587
Alı	2.388	2.388	2.388	2.354	
N ₁	-2.381	-2.381	-2.381	-2.405	-0.595
Al_2	(2.387)	2.387	2.387	2.386	
N_2	-2.387	-2.387	-2.387	-2.388	-0.595

$$\sigma=2.387 {\Rightarrow} \sigma_s{=} {-}\sigma/4 = {-}0.597$$

The additional N atom is responsable of 90 % of the surface charge.

F. Chaumeton et al., PHYSICAL REVIEW B 94, 165305 (2016)

1 - the surface charge on the 2H-AIN(0001) (2x2)-Nad surface

- N bulk
- N_{ad}

For 2H AIN(0001) polar direction :

 $\sigma_s = -\sigma/4$

Bader charge analysis(in |e| and |e| per (1x1) unit surface for σ_s)tom1234 σ_s

Atom	1	2	3	4	$\sigma_{\rm S}$
Ns	-2.201				-0.550
Al ₀	2.322	2.322	2.322	2.348	
No	-2.386	-2.385	-2.385	-2.305	-0.587
Al ₁	2.388	2.388	2.388	2.354	
N_1	-2.381	-2.381	-2.381	-2.405	-0.595
Al_2	(2.387)	2.387	2.387	2.386	
N_2	-2.387	-2.387	-2.387	-2.388	-0.595

$\sigma=2.387 {\Rightarrow} \sigma_s{=} {-}\sigma/4 = {-}0.597$

The additional N atom is responsable of 90 % of the surface charge.

CHARGE TRANSFER to the Au layer ?

NanoSciences

resden o

2 - Bonds and charge transfer on the Au layer

DFT cell: AIN(0001) (4x4) with the reconstruction (2x2)Nad 21 Au atoms

N_{ad} (don)

NanoSciences

Due to the three-fold symmetry: 7 groups of 3 Au atoms

PAMS

2 - Bonds and charge

transfer on the Au layer

	Group	Bonds with the AIN surface	Q _b Iel
AI sp ³	1	Al sp ²	- 0.48
AI sp ²	2		
N bulk	3		
N_{ad}	4		
	5		
0	6		
	7		

2 - Bonds and charge

transfer on the Au layer

	Group	Bonds with the AIN surface	Q _b Iel
AI sp ³	1	Al sp ²	- 0.48
AI sp ²	2	$AI + N_{ad}$	- 0.13
N bulk	3		
N_{ad}	4		
ny S Ranc	5		
	6		
	7		

2 - Bonds and charge

transfer on the Au layer

	Group	Bonds with the AIN surface	Q _b Iel
AI sp ³	1	Al sp ²	- 0.48
AI sp ²	2	AI + N _{ad}	- 0.13
N bulk	3	N _{ad}	0.1
N_{ad}	4		
ny S Nan GRANE	5		
	6		
	7		

2 - Bonds and charge

transfer on the Au layer

	Group	Bonds with the AIN surface	Q _b Iel
AI sp ³	1	Al sp ²	- 0.48
AI sp ²	2	AI + N _{ad}	- 0.13
N bulk	3	N _{ad}	0.1
N_{ad}	4	no	- 0.09
ny S Nan GRAND	5		
	6		
	7		

2 - Bonds and charge

transfer on the Au layer

Due to the three-fold symmetry: 7 groups of 3 Au atoms

	Group	Bonds with the AIN surface	Q _b Iel
AI sp ³	1	Al sp ²	- 0.48
AI sp ²	2	AI + N _{ad}	- 0.13
N bulk	3	N _{ad}	0.1
N _{ad}	4	no	- 0.09
n o ny S Nan Z	5	no	- 0.05
	6		
	7		

AI

AI

2 - Bonds and charge

transfer on the Au layer

	Group	Bonds with the AIN surface	Q _b Iel
AI sp ³	1	Al sp ²	- 0.48
AI sp ²	2	AI + N _{ad}	- 0.13
N bulk	3	N _{ad}	0.1
N_{ad}	4	no	- 0.09
en o	5	no	- 0.05
	6	no	- 0.03
	7		

2 - Bonds and charge

transfer on the Au layer

Due to the three-fold symmetry: 7 groups of 3 Au atoms

	Group	Bonds with the AIN surface	Q _b Iel
AI sp ³	1	Al sp ²	- 0.48
AI sp ²	2	AI + N _{ad}	- 0.13
N bulk	3	N _{ad}	0.1
N_{ad}	4	no	- 0.09
ny S Rang Z	5	no	- 0.05
	6	no	- 0.03
	7	no	- 0.08

2 - Bonds and charge transfer on the Au layer

	AIN (2)	x2)Nad	21Au/A	IN(4x4)
	atom mean charge	(1x1) mean charge	atom mean charge	(1x1) mean charge
Au		_	-0.11	-0.144
N_{ad}	-2.18	-0.545	-1.73	-0.432
Al ₁	2.31	0.577	2.33	0.578
N_1	-2.35	-0.587	-2.34	-0.585

25 % of charge transfer from the (2x2)N_{ad} to the Au layer

KPFM

FAMS CINS

X. BOUJU

CEMES-CNRS

Dresden ⊙ Germany ☉

NanoSciences

PAMS

X. BOUJU

CEMES-CNRS

Discharge?

Торо

KPFM

Discharge?

Germany 🗢

PAMS

2017

CEMES-CNRS

Summary

Au 2D monoatomic high islands on AIN(0001)

Experiments:

- two moiré observed by NC-AFM with Qplus at 4K
- Two models with hexagonal pattern explained the observed moiré

DFT calculations :

- models on AIN(4x4) cells with 21 atoms allow to mimic the moiré
- DFT energies and d_{Au-inplane} analysis confirm that the N_{ad} atoms are still present

Stabilization mechanisms :

- 9 of the 21 Au atoms create bonds with AI sp² and N_{ad}
- charge transfer of 25 % from the N_{ad} atoms to the Au layer

RAND SUD - OUEST

AIN(0001) polar surface drives the stabilization of the Au layer

X. BOUJU CEMES-CNRS

Acknowledgments

Calculations

Benoit Eydoux

Experiments

Bulent Baris Hassan Khoussa Olivier Guillermet Sébastien Gauthier David Martrou

X. BOUJU CEMES-CNRS

