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The Seebeck Effect
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Device Efficiency
The ability of a given material to efficiently produce thermoelectric power is
related to the figure of merit:

7T — 0.52.T

0.5%: Power Factor (PF)
r: Thermal Conductivity

= A good TE material has a large PF and a small &

» 2D materials (like TMDC) are expected to have a low thermal conductance.
» |t is possible to reduce k by phonon engineering.
» To obtain the largest Power Factor (PF), we need a large o and a large S.

» Metal have large o and poor S.
» Semiconductor have very poor o and large S.

» One way to obtain a large PF is to use doped semiconductor.

» We have investigated two technics: substitution and adsorption doping.
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TMDC's Structure

@V (Mow) © X (SSeTe)

o TMDC (MXz) = honeycomb structure.
Made up of layered X-M-X sheets.

® Two hexagonal sheets of X atoms and an

°

a, NN intermediate hexagonal sheet of M atoms.
CI jL # Monolayer TMDC are semiconductor with direct
NN band-gap.

Doping Issue

Doping b Substltutlon . ]
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w S Outstanding Experimental achievement:
Ta: Re & N-doping of MoS, by surface charge transfer using K.
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A Few Words About Theory

= The PF is obtained using ab-initio calculations and Green's function technics
(NEGF) on the basis of Landauer-Biittiker formalism

Boltzmann NEGF
® Semi-classical theory # Full ab nitio theory
# Scattering mechanisms described by: # Based on localized basis set (SIESTA)
Relaxation Time (7) # Scattering mechanisms have to be
It gathers all scattering mechanisms: defined
(defects, e- - e-, e- - phonons ...) Insight on disorder scattering

S and GG are computed using the Transmission:

, [
G = -2 | 1k (g_g) dE

) (E—EF)T(E)(%)dE
S = “ksT

fﬂo T(E) (g—g) dE

Within this formalisn, it is possible to deal with realistic disordering.
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Rigid shift of the fermi-level= Carrier doping by field effect.

® PF.. linked with 2 opposite trends
» o S with |Ey|
» S \( with ‘Ef‘
#® Aim: To access the largest PF with a doping technique.

PF carrier charge
S(uV/K) | o(uS/A) ,
(LW/K"/m) | per UC x 100
MoS; —157. 8. 1888 +1.
MoSe, —87. 20. 1480 +9.
WS, —86. 16. 1193 +6.5
WSe, —173. 7. 1968 +1.5

# Hole doping leads to lower PF.

® Largest PF for MoS, and WSe, for moderate carrier
doping.

# Armchair transport direction leads to similar results.
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Ab initio Calculations
For Substitution Doping
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# Subtitution doping by P and Cl is leading to donnor states at the Fermi level.

#® This is also observed with F, Br and Re.

® These states lead to almost flat bands at low doping concentration.
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Adsorption Doping
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» Alkalies are creating states at much more

higher energies than the first conduction
band.

® They act almost as perfect donnors (band
shifting).

# however they affect a bit the dispersion of
the bands and remove some degeneracies.
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Band structure for a 2 X 3 rectangular lattice.
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Power Factor Under Real Doping

MOSQ
1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
Rigid band model ——] ]
—~ D adsorption ( . .
£ Li doping —o— 1 ® Very poor PF for Cl
Vo substltutlon(CI doping - 1 8 At low concentration = Poor o
O . .
=8 ] Alkal
N 4% 6 -
NU) ‘1“;5 1# Much closer to the Rigid band model.
Ne) . I
° 9 KN %A 1# Large atoms (K or Rb) are better
4% K  Al7% N candidates than the smaller one (Li or
B3% "\ .54 < 25 % ]
1 1 1 ’_J___‘/l 1 1 | \1‘4__4__]__4__‘_
0.05 0.1 0.15
carrier charge per UC
_ 4.2% | o(uS/A) | S(uV/K) | PF(uW/K?/m)
# Lower conductance for Li and Na.
MoS, Na 2. —105. 200.
® Lower PF for MoSey and WS, Rb 6 113, 798
#» MoS; and WSes, are the best candidates MoSe, ) ;. 9 530,
WSe, 4. —150. 929.
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Scattering by Disorders
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# The conductivity decay is not
compensated by the Seebek
increase with the length.

® Anderson Localization
Potassium

# The PF variation is only one order
of magnitude for a 50 nm length
system.

Coherence length (L.)

p(L) o e2b/Ee _ ]
» Cl= 35nmm
» K= 15pum
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Concluding Remarks

Rigid band model should be handled with care

Cl and P lead to donnor states at the FL
Chloride leads to an Anderson localization

Alkalies act almost as perfect e- donnors

Thanks for your attention!
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