Synaptic plasticity and learning in ferroelectric tunnel junction

¹Department of Physics, Konkuk University, Seoul143-701, Korea ²School of Electrical Engineering, Kookmin University, Seoul 136-702, Korea ³Korea Research Institute of Standards and Science, Daejeon 305-304, Korea Chansoo Yoon¹, Ji Hye Lee¹, Sangik Lee¹, Jihoon Jeon¹, Jun Tae Jang², Dae Hwan Kim², Young Heon Kim³ and Bae Ho Park^{1,*}

Jl30124@gmail.com

Abstract (Calibri 11)

In neuromorphic computing, synapse plays the key of role by varying its connection weight between two neurons, which is known as synaptic plasticity. Among many different candidates for synaptic devices, two-terminal ferroelectric tunnel junction (FTJ) has demonstrated that gradual switching between on-state and off-state induced by DC voltage pulses strongly depend on their amplitude, duration or number, which simultaneously control ferroelectric domain configurations. However, its limited barrier height modulation inevitably gives rise to low on/off ratio. Here, we report a synaptic metal/ferroelectric /metal device which shows a giant on/off ratio (~10⁷). The device also shows synaptic plasticity, learning and memory function by the modulation of tunneling barrier width. Its excellent performances may result from combination of ferroelectric polarization and migrated ions.

Figures

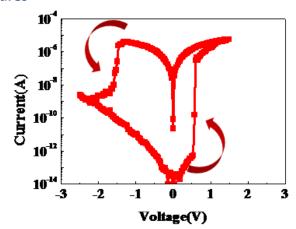


Figure 1: Resistive switching behavior.