Nitrogen and Sulfur Co-doped Holey Graphene Aerogel For Highperformance Compression-Tolerant All Solid-State Supercapacitors

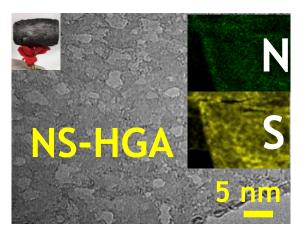
Moumita Kotal¹ Hyunjun Kim, ¹ Sandipan

Roy,¹ Il-kwon Oh¹

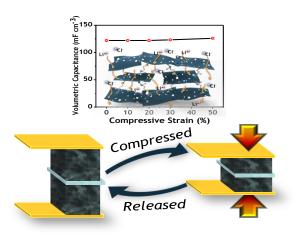
mkotal@kaist.ac.kr

¹ Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong-gu Daejeon 34141, Republic of Korea

Abstract


Deformation-tolerant power-source devices are crucial for designing high-tech elastic electronics owing to their elasticity of integration into preferred levels of eccentric forms while maintaining the performance and reliability.^[1] Among various powersource devices, compression-tolerant all solid-state supercapacitors (ASSCs) could be a strong candidate for next-generation elastic electronics.^[2] However, the use of non-conductive compressible substrate and pseudocapacitor agents as additives could inhibit the compressibility as well as the performance of the devices. Therefore, proper selection of porous foam-like electrodes with compressibility, remarkable sustainable conductivities and electrochemical performances under verying compressions are the critical prerequisites to develop high-performance compressible ASSCs. Here, we introduce a facile technique without using any additives for fabricating highly compressible, electrically conductive, nitrogen and sulfur co-doped holey graphene aerogels (NS-HGA) as an efficient electrode for highperformance compressible ASSCs. Such covalently interconnected holey framework with heteroatom co-doping greatly increases repeatable elasticity and excellent structural robustness, high electrolyte ion storage ability, unimpeded ion channels to offer excellent conductivity (21.66 S m⁻¹) and significantly high volumetric capacitance (203 mFcm⁻³) in ASSCs with good rate capability and almost unaltered capacitance at 50% compression with good durability for 200 cycles. The current unique methodology to develop heteroatom co-doped holey graphene aerogel for designing highperformance compressible ASSCs will pave a new approach in the modern era of elastic electronics.

References


[1] J. A. Rogers, T. Someya, Y. Huang, Science, 327 (2010) 1603

[2] Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Advanced Materials, 4, 25 (2013) 591

Figures

Figure 1. HRTEM and STEM images of N and S co-doped ultra-light graphene aerogel

Figure 2. Compression-tolerant all-solid-state supercapacitors