Synthesis, Characterization and Application of WS₂ nanostructures in Gas Sensing

Siziwe Gqoba¹ Rafael Rodrigues² Nosipho Moloto¹ Ivo A. Hümmelgen²

siziwe.gqoba@wits.ac.za

¹ University of the Witwatersrand, Molecular Sciences Institute, School of Chemistry Private Bag 3, Wits, 2050, Johannesburg, Republic of South Africa

² Universidade Federal do Paraná, Departamento de Física, Caixa Postal 19044,

81531-980, Curitiba, Brazil

WS₂, is one of the most promising 2-D materials for gas sensing applications after graphene [1]. In the current study, WS_2 nanostructures were synthesized by a simple and relatively low temperature colloidal route in the presence of oleylamine (OLA). The formation of nanosheets was found to be a function of time from nanoflakes to nanosheets (fig. 1). The diffraction pattern showed prominence of the (002) peak suggesting the existence of multi-layered nanosheets (fig. 2). The nanostructures displayed an n-type behavior towards certain polar and non-polar chemical vapors.

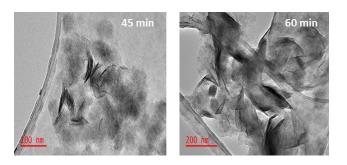


Figure 2. Typical TEM images of WS₂ nanostructures at different reaction time intervals

Reference

 Kim J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J., J. Phys. Chem. Lett., 4 (2013) 1227–1232

Figures

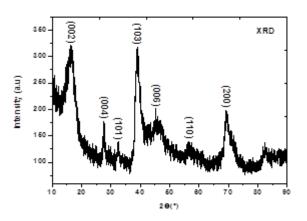


Figure 1. Typical XRD pattern of WS₂ nanosheets