Isolation of Highly Stable Antimonene under Ambient Conditions. Optical and Electrical Properties

¹ Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Spain

² Department of Chemistry, Universidad Autónoma de Madrid, Spain

³ Department of Inorganic Chemistry, Universidad Autónoma de Madrid, Spain

⁴ Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Spain

⁵ Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Spain

⁶ Department of Chemistry and Pharmacy, University Erlangen-Nürnberg, Germany

Graphene paved the way for the rising of a whole family of 2D materials. Graphene is a semimetal with zero-gap and transition metal dichalcogenides present a band gap in the range 1.5-2.5 eV [1], inappropriate for some optoelectronics applications where 0.1-1.5 eV are preferred. Few-layer black phosphorous (BP) [2] presents an energy gap within this range. However, it is highly hygroscopic [3]. In the same group in the periodic table we also find antimony, a silvery lustrous, non-hygroscopic element with a layered structure similar to that of BP. Theoretical calculations [4] point towards a band gap suitable for these optoelectronics applications. We report micromechanical and liquid-phase exfoliation of antimony down to the single-layer regime and experimental evidence of its high stability in ambient conditions [5, 6]. We also present optimized optical identification [7] and preliminary results on the conductive properties of few-layer antimonene, which point to be governed by topologically protected surface states. In this **Probe-Assisted** Nanowire context, (PAN) lithography is introduced; a novel technique to create nanoelectrodes that has allowed probing the electrical properties of tiny few-layer antimonene flakes.

References

- [1] Wang, et al., Nat. Nanotech. 7, 699–712 (2012).
- [2] Castellanos-Gomez, J. Phys. Chem. Lett. 6, 4280–4291 (2015).
- [3] Island et al., 2D Materials 2, 011002 (2015).
- [4]Aktürk, et al., Phys. Rev. B 91, 235446 (2015).
- [5]Ares et al., Adv. Mater. 28, 6332–6336 (2016).

J. Gómez-Herrero^{1,4}

P. Ares¹, F. Aguilar-Galindo², D. Rodríguez-San-Miguel³, C. Gibaja³, D.A. Aldave¹, W. Silva¹, S. Pakdel¹, J. J. Palacios^{1,4}, S. Díaz-Tendero^{2,4}, M. Alcamí^{2,5}, F. Martín^{2,4,5}, F. Hauke⁶, A. Hirsch⁶, G. Abellán⁶, F. Zamora^{3,4,5}

julio.gomez@uam.es

[6]Gibaja et al., Angew. Chem. Int. Ed. 55, 14345-14349 (2016).[7]Ares et al., ACS Photonics 4, 600-605 (2017).

Figures

Figure 1. Atomic force microscopy image of an antimonene flake representing its stability in ambient conditions.